[1] |
Yang X, Scuderi L, Paillou P, et al. Quaternary environmental changes in the drylands of China: A critical review[J]. Quaternary Science Reviews, 2011,30(23-24):3219-3233.
doi: 10.1016/j.quascirev.2011.08.009
|
[2] |
Li Z, Wang N, Li R, et al. Indication of millennial-scale moisture changes by the temporal distribution of Holocene calcareous root tubes in the deserts of the Alashan Plateau, northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,440:496-505.
doi: 10.1016/j.palaeo.2015.09.023
|
[3] |
孙庆峰, 陈发虎, 李孝泽. 巴丹吉林沙漠第四纪研究评述与讨论[J]. 干旱区研究, 2008,25(2):304-310.
|
|
[ Sun Qingfeng, Chen Fahu, Li Xiaoze. Review and discussion about the progress of Quaternary research of the Badain Jaran Desert, China[J]. Arid Zone Research, 2008,25(2):304-310. ]
|
[4] |
Liu S, Lai Z, Wang Y, et al. Growing pattern of mega-dunes in the Badain Jaran Desert in China revealed by luminescence ages[J]. Quaternary International, 2015,410:111-118.
doi: 10.1016/j.quaint.2015.09.048
|
[5] |
Wang F, Sun D, Chen F, et al. Formation and evolution of the Badain Jaran Desert, north China, as revealed by a drill core from the desert centre and by geological survey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,426:139-158.
doi: 10.1016/j.palaeo.2015.03.011
|
[6] |
Wang N, Ning K, Li Z, et al. Holocene high lake-levels and pan-lake period on Badain Jaran Desert[J]. Science China Earth Sciences, 2016,59(8):1633-1641.
doi: 10.1007/s11430-016-5307-7
|
[7] |
赵力强, 张律吕, 王乃昂, 等. 巴丹吉林沙漠湖泊形态初步研究[J]. 干旱区研究, 2018,35(5):1001-1011.
|
|
[ Zhao Liqiang, Zhang Lvlv, Wang Nai’ang, et al. Morphology of the lakes in the Badain Jaran Desert[J]. Arid Zone Research, 2018,35(5):1001-1011. ]
|
[8] |
Jin K, Rao W, Guo Q, et al. Understanding recharge of soil water in a sand dune at the Nuoertu of Badain Jaran Desert using isotopes of H and O[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018,318:1063-1075.
doi: 10.1007/s10967-018-6204-7
|
[9] |
Li Z, Chen Q, Zhang C, et al. Environmental significance of the chemical composition of sediments in groundwater-recharged lakes of the Badain Jaran Desert, NW China[J]. Geochemistry, Geophysics, Geosystems, 2019,20(2):1026-1040.
doi: 10.1029/2018GC007967
|
[10] |
Hu F, Yang X. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China[J]. Quaternary Science Reviews, 2016,131:179-192.
doi: 10.1016/j.quascirev.2015.10.039
|
[11] |
Liu W, Jiang H, Shi C, et al. Chemical and strontium isotopic characteristics of the rivers around the Badain Jaran Desert, northwest China: Implication of river solute origin and chemical weathering[J]. Environmental Earth Sciences, 2016,75(15):1119.
doi: 10.1007/s12665-016-5910-0
|
[12] |
Wang Z, Chen T, Liu S, et al. Aeolian origin of interdune lakes in the Badain Jaran Desert, China[J]. Arabian Journal of Geosciences, 2016,9(3):190.
doi: 10.1007/s12517-015-2062-6
|
[13] |
Zhao T, Liu W, Xu Z, et al. Cosmogenic nuclides (10Be and 26Al) erosion rate constraints in the Badain Jaran Desert, northwest China: Implications for surface erosion mechanisms and landform evolution[J]. Geosciences Journal, 2018,23(1):59-68.
doi: 10.1007/s12303-018-0010-7
|
[14] |
Yang Y, Li B, Qiu S, et al. Climatic changes indicated by trace elements in the Chagelebulu Stratigraphic Section, Badain Jaran Desert, China, since 150 kyr BP[J]. Geochemistry International, 2008,46(1):96-103.
doi: 10.1134/S0016702908010096
|
[15] |
Guo Y, Li B, Wang F, et al. Holocene millennial-scale climate variations from the record of primary chemical elements in Badain Jaran Desert, China[J]. Arabian Journal of Geosciences, 2016,9(1):51.
doi: 10.1007/s12517-015-2123-x
|
[16] |
Li Z, Wei Z, Dong S, et al. The paleoenvironmental significance of spatial distributions of grain size in groundwater-recharged lakes: A case study in the hinterland of the Badain Jaran Desert, northwest China[J]. Earth Surface Processes and Landforms, 2018,43(8):363-372.
doi: 10.1002/esp.v43.2
|
[17] |
Yang X, Man, Dong J, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China[J]. Quaternary Research, 2010,73(1):10-19.
doi: 10.1016/j.yqres.2009.10.009
|
[18] |
Yang X, Williams M. The ion chemistry of lakes and Late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China[J]. Catena, 2003,51(1):45-60.
doi: 10.1016/S0341-8162(02)00088-7
|
[19] |
王涛. 巴丹吉林沙漠形成演变的若干问题[J]. 中国沙漠, 1990,10(1):29-40.
|
|
[ Wang Tao. Some problems on the formation and evolution of Badain Jaran Desert[J]. Journal of Desert Research, 1990,10(1):29-40. ]
|
[20] |
Fan X, Zhang X, Tian M. Climate change during the last glacial period on the southeast margin of Badain Jaran Desert, northwest China[J]. Journal of Mountain Science, 2019,16(10):2379-2388.
doi: 10.1007/s11629-018-5186-9
|
[21] |
朱立平, 王君波, 陈玲, 等. 藏南沉错湖泊沉积多指标揭示的2万年以来环境变化[J]. 地理学报, 2004,59(4):514-524.
doi: 10.11821/xb200404004
|
|
[ Zhu Liping, Wang Junbo, Chen Ling, et al. Environmental changes in the past 20,000 years revealed by multiple indicators of sedimentation in the faulted lakes in southern Tibet[J]. Acta Geographica Sinica, 2004,59(4):514-524. ]
doi: 10.11821/xb200404004
|
[22] |
李培泉, 刘志和, 卢光山, 等. 冲绳海槽沉积物中U,Ra,Th,~(40)K的地球化学研究[J]. 海洋与湖沼, 1984,15(5):457-467.
|
|
[ Li Peiquan, Liu Zhihe, Lu Guangshan, et al. Geochemical study of U,Ra,Th,~(40)K in Okinawa trough sediments[J]. Oceans and Lakes, 1984,15(5):457-467. ]
|
[23] |
Hess J, Bender M, Schilling J. Evolution of the ratio of Strontium-87 to Strontium-86 in seawater from Cretaceous to present[J]. Science, 1986,231(4741):979-984.
doi: 10.1126/science.231.4741.979
pmid: 17740296
|
[24] |
范小露, 田明中, 刘斯文, 等. 巴丹吉林沙漠东南部末次间冰期环境演变: 来自粒度、光释光(OSL)及14C测年的证据[J]. 干旱区地理, 2014,37(5):892-900.
|
|
[ Fan Xiaolu, Tian Mingzhong, Liu Siwen, et al. Environmental change of southeastern Badain Jaran Desert during the last interglacial: Evidences from the grain-size analysis,optically stimulated luminescence and radiocarbon dating[J]. Arid Land Geography, 2014,37(5):892-900. ]
|
[25] |
沈吉, 吕厚远, 王苏民, 等. 错鄂孔深钻揭示的青藏高原中部2.8 MaBP以来环境演化及其对构造事件响应[J]. 中国科学(D辑), 2004,34(4):359-366.
|
|
[ Shen Ji, Lyu Houyuan, Wang Sumin, et al. Environmental evolution and its response to tectonic events since the 2.8 MaBP in the central Qinghai-Tibet Plateau revealed by the deep drilling in chokang[J]. Science in China (series D), 2004,34(4):359-366. ]
|
[26] |
Obreht I, Hambach U, Veres D, et al. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal[J]. Scientific Reports, 2017,7(1):5848.
pmid: 28725004
|
[27] |
李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001,21(5):381-391.
|
|
[ Li Jijun, Fang Xiaomin, Pan Baotian, et al. Strong uplift of the late Cenozoic Qinghai-Tibet Plateau and its influence on the surrounding environment[J]. Quaternary Research, 2001,21(5):381-391. ]
|
[28] |
Hao Q, Wang L, Oldfield F, et al. Delayed build-up of arctic ice sheets during 400,000-year minima in insolation variability[J]. Nature, 2012,490:393-396.
doi: 10.1038/nature11493
pmid: 23034648
|
[29] |
Li Y, Song Y, Fitzsimmons K, et al. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin[J]. Climate of the Past, 2018,14:271-286.
doi: 10.5194/cp-14-271-2018
|
[30] |
刘浩, 贾佳, 路彩晨, 等. 则克台黄土粒度组分分离及其记录的末次冰期气候波动[J]. 干旱区地理, 2018,41(6):1260-1269.
|
|
[ Liu Hao, Jia Jia, Lu Caichen, et al. Multi-components separation of loess grain size in Zeketai and the recorded climate fluctuation during the last glacial period[J]. Arid Land Geography, 2018,41(6):1260-1269. ]
|
[31] |
Li D, Li Y, Ma B, et al. Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges[J]. Environmental Research Letters, 2009,4(4):045204, doi: 10.1088/1748-9326/4/4/045204.
doi: 10.1088/1748-9326/4/4/045204
|
[32] |
杜丁丁, Muhammad S, Dembele B, 等. 青藏高原中部色林错湖泊沉积物色度反映末次冰盛期以来区域古气候演化[J]. 干旱区地理, 2019,42(3):551-558.
|
|
[ Du Dingding, Muhammad S, Dembele B, et al. Paleoclimatic changes reflected by diffuse reflectance spectroscopy since Last Glacial Maximum from Selin Co Lake sediments, central Qinghai-Tibetan Plateau[J]. Arid Land Geography, 2019,42(3):551-558. ]
|