[1] |
Miao Y F, Wu F L, Warny S, et al. Miocene fire intensification linked to continuous aridification on the Tibetan Plateau[J]. Geology, 2019, 47(4): 303-307.
doi: 10.1130/G45720.1
|
[2] |
Edwards E J, Osborne C P, Stroemberg C A E, et al. The origins of C4 grasslands: Integrating evolutionary and ecosystem science[J]. Science, 2010, 328(5978): 587-591.
doi: 10.1126/science.1177216
pmid: 20431008
|
[3] |
Bowman D M J S, Balch J K, Artaxo P, et al. Fire in the earth system[J]. Science, 2009, 324(5926): 481-484.
doi: 10.1126/science.1163886
pmid: 19390038
|
[4] |
Filion L. A relationship between dunes, fire and climate recorded in the Holocene deposits of Quebec[J]. Nature, 1984, 309(5968): 543-546.
doi: 10.1038/309543a0
|
[5] |
李宜垠, 侯树芳, 赵鹏飞. 微炭屑的几种统计方法比较及其对人类活动的指示意义[J]. 第四纪研究, 2010, 30(2): 356-363.
|
|
[ Li Yiyin, Hou Shufang, Zhao Pengfei. Comparison of different quantification methods for microfossil charcoal concentration and the implication for human activities[J]. Quaternary Sciences, 2010, 30(2): 356-363. ]
|
[6] |
Winkler M G. Charcoal analysis for paleoenvironmental interpretation: A chemical assay[J]. Quaternary Research, 1985, 23(3): 313-326.
doi: 10.1016/0033-5894(85)90038-9
|
[7] |
曹艳峰, 黄春长, 韩军青, 等. 黄土高原东西部全新世剖面炭屑记录的火环境变化[J]. 地理与地理信息科学, 2007, 23(1): 92-96.
|
|
[ Cao Yanfeng, Huang Chunchang, Han Junqing, et al. Changes of fire environment recorded by charcoal hided in Holocene profiles in the eastern and western Loess Plateau[J]. Geography and Geo-Information Science, 2007, 23(1): 92-96. ]
|
[8] |
李小强, 周新郢, 尚雪, 等. 黄土炭屑分级统计方法及其在火演化研究中的意义[J]. 湖泊科学, 2006, 18(5): 540-544.
doi: 10.18307/2006.0517
|
|
[ Li Xiaoqiang, Zhou Xinying, Shang Xue, et al. Different-(kPa/℃) size method of charcoal analysis in loess and its significance in the study of fire variation[J]. Journal of Lake Sciences, 2006, 18(5): 540-544. ]
doi: 10.18307/2006.0517
|
[9] |
Swain A M. A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments[J]. Quaternary Research, 1973, 3(3): 383-390.
doi: 10.1016/0033-5894(73)90004-5
|
[10] |
郭小丽. 我国古环境中炭屑的研究现状与展望[J]. 冰川冻土, 2011, 33(2): 342-348.
|
|
[ Guo Xiaoli. Advance of charcoal study for paleoenvironment in China[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 342-348. ]
|
[11] |
Patterson W A, Edwards K J, Maguire D J. Microscopic charcoal as a fossil indicator of fire[J]. Quaternary Science Reviews, 1987, 6(1): 3-23.
doi: 10.1016/0277-3791(87)90012-6
|
[12] |
Leys B, Brewer S C, Mcconaghy S, et al. Fire history reconstruction in grassland ecosystems: Amount of charcoal reflects local area burned[J]. Environmental Research Letters, 2015, 10(11): 114009, doi: 10.1088/1748-9326/10/11/114009.
doi: 10.1088/1748-9326/10/11/114009
|
[13] |
Whitlock C, Millspaugh S H. Testing the assumptions of fire-history studies: An examination of modern charcoal accumulation in Yellowstone National Park, USA[J]. The Holocene, 1996, 6(1): 7-15.
doi: 10.1177/095968369600600102
|
[14] |
张健平, 吕厚远. 现代植物炭屑形态的初步分析及其古环境意义[J]. 第四纪研究, 2006, 26(5): 857-863.
|
|
[ Zhang Jianping, Lü Houyuan. Preliminary study of charcoal morphology and its environmental significance[J]. Quaternary Sciences, 2006, 26(5): 857-863. ]
|
[15] |
Brown K J, Hebda N J, Conder N, et al. Changing climate, vegetation, and fire disturbance in a sub-boreal pine-dominated forest, British Columbia, Canada[J]. Canadian Journal of Forest Research, 2017, 47(5): 615-627.
doi: 10.1139/cjfr-2016-0283
|
[16] |
Macdonald G M, Larsen C, Szeicz J M, et al. The reconstruction of boreal forest fire history from lake sediments: A comparison of charcoal, pollen, sedimentological, and geochemical indices[J]. Quaternary Science Reviews, 1991, 10(1): 53-71.
doi: 10.1016/0277-3791(91)90030-X
|
[17] |
徐鑫, 李宜垠. 基于3种不同类型的炭屑数据定量重建大兴安岭火历史的结果对比[J]. 第四纪研究, 2015, 35(4): 960-966.
|
|
[ Xu Xin, Li Yiyin. Comparison of the fire history reconstructions from three different kinds of charcoal data on the same site, Daxing’an Mountain[J]. Quaternary Sciences, 2015, 35(4): 960-966. ]
|
[18] |
罗运利, 陈怀成, 吴国瑄, 等. 南海最近3个冰期旋回中的天然火与气候--ODP1144孔深海沉积中的炭屑记录[J]. 中国科学(D辑: 地球科学), 2001, 31(10): 854-860.
|
|
[ Luo Yunli, Chen Huaicheng, Wu Guoxuan, et al. Records of natural fire and climate history during the last three glacial-interglacial cycles around the South China Sea: Charcoal record from the ODP1114[J]. Scientia Sinica (Terrae), 2001, 31(10): 854-860. ]
|
[19] |
孙湘君, 李逊, 陈怀成. 南海北部最近37 ka以来天然火与气候[J]. 中国科学(D辑: 地球科学), 2000, 30(2): 163-168.
|
|
[ Sun Xiangjun, Li Xun, Chen Huaicheng. Natural fire and climate in the northern part of the South China Sea since the last 37 ka[J]. Scientia Sinica (Terrae), 2000, 30(2): 163-168. ]
|
[20] |
王梓莎, 苗运法, 赵永涛, 等. 柴达木盆地北缘湖泊表层沉积物炭屑特征及其环境意义[J]. 中国沙漠, 2020, 40(4): 10-17.
|
|
[ Wang Zisha, Miao Yunfa, Zhao Yongtao, et al. Characteristics of microcharcoal in the lake surface sediments in the northern margin of Qaidam Basin of China and its environmental significance[J]. Journal of Desert Research, 2020, 40(4): 10-17. ]
|
[21] |
吴立, 张梦翠, 计超, 等. 全新世巢湖沉积物炭屑记录的火环境变化[J]. 地理科学, 2016, 36(12): 1920-1928.
doi: 10.13249/j.cnki.sgs.2016.12.018
|
|
[ Wu Li, Zhang Mengcui, Ji Chao, et al. Charcoal recorded fire environment change during the Holocene from the sediment of the Chaohu Lake, east China[J]. Scientia Geographica Sinica, 2016, 36(12): 1920-1928. ]
doi: 10.13249/j.cnki.sgs.2016.12.018
|
[22] |
贾铁飞, 高鑫, 王峰. 近百年来长江荆江段牛轭湖沉积的孢粉、炭屑特征及其环境意义--以天鹅洲、尺八湖为例[J]. 长江流域资源与环境, 2017, 26(10): 145-155.
|
|
[ Jia Tiefei, Gao Xin, Wang Feng. Significance of pollen and charcoal characteristices to the oxbow environmental change events at Jingzhou the Yangtze River in recent 100 years: A case study of Tian’e and Chiba Lake[J]. Resources and Environment in the Yangtze Basin, 2017, 26(10): 145-155. ]
|
[23] |
谭志海, 黄春长, 庞奖励, 等. 陇东黄土高原北部全新世野火历史的木炭屑记录[J]. 第四纪研究, 2008, 28(4): 733-738.
|
|
[ Tan Zhihai, Huang Chunchang, Pang Jiangli, et al. Charcoal recorded Holocene fire history in the northern part of the Longdong Loess Plateau[J]. Quaternary Sciences, 2008, 28(4): 733-738. ]
|
[24] |
谭志海, 黄春长, 庞奖励, 等. 渭河流域全新世土壤剖面木炭屑记录及其古环境意义[J]. 中国生态农业学报, 2010, 18(1): 25-30.
doi: 10.3724/SP.J.1011.2010.00025
|
|
[ Tan Zhihai, Huang Chunchang, Pang Jiangli, et al. Charcoal records of Holocene loess-soil sequences and its palaeoenvironmental significance in Weihe River Drainage[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 25-30. ]
doi: 10.3724/SP.J.1011.2010.00025
|
[25] |
Li X Q, Sun N, Dodson J, et al. Human activity and its impact on the landscape at the Xishanping site in the western Loess Plateau during 4800-4300 cal yr BP based on the fossil charcoal record[J]. Journal of Archaeological Science, 2012, 39(10): 3141-3147.
doi: 10.1016/j.jas.2012.04.052
|
[26] |
蔡晓敏, 苗运法, 靳鹤龄, 等. 全新世中期毛乌素沙地炭屑记录与火灾历史[J]. 中国沙漠, 2015, 35(5): 1156-1162.
|
|
[ Cai Xiaomin, Miao Yunfa, Jin Heling, et al. Mid-Holocene charcoal records and fire history in the east edge of the Mu Us Sandy Land, China[J]. Journal of Desert Research, 2015, 35(5): 1156-1162. ]
|
[27] |
李小强, 赵宏丽, 闫敏华, 等. 东北三江平原全新世火演化及其与植被和气候的关系[J]. 地理科学, 2005, 25(2): 177-182.
|
|
[ Li Xiaoqiang, Zhao Hongli, Yan Minhua, et al. Fire variations and relationship among fire and vegetation and climate during Holocene at Sanjiang Plain, northeast China[J]. Scientia Geographica Sinica, 2005, 25(2): 177-182. ]
|
[28] |
Shi Y L, Pan B L, Wei M L, et al. Wildfire evolution and response to climate change in the Yinchuan Basin during the past 1.5 Ma based on the charcoal records of the PL02 core[J]. Quaternary Science Reviews, 2020, 241: 106393, doi: 10.1016/j.quascirev.2020. 106393.
doi: 10.1016/j.quascirev.2020. 106393
|
[29] |
Kappenberg A, Amelung W, Conze N, et al. Fire-vegetation relationships during the last glacial cycle in a low mountain range (Eifel, Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 562(6): 110140, doi: 10.1016/j.palaeo.2020.110140.
doi: 10.1016/j.palaeo.2020.110140
|
[30] |
Ma Y Z, Wu F L, Fang X M, et al. Pollen record from red clay sequence in the central Loess Plateau between 8.10 and 2.60 Ma[J]. Chinese Science Bulletin, 2005, 50(19): 2234-2242.
doi: 10.1007/BF03182675
|
[31] |
Hoetzel S, Dupont L, Schefu E, et al. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution[J]. Nature Geoscience, 2013, 6(12): 1027-1030.
doi: 10.1038/ngeo1984
|
[32] |
Miao Y F, Fang X M, Song C H, et al. Late Cenozoic fire enhancement response to aridification in mid-latitude Asia: Evidence from microcharcoal records[J]. Quaternary Science Reviews, 2016, 139: 53-66.
doi: 10.1016/j.quascirev.2016.02.030
|
[33] |
Hui Z C, Gowan E J, Hou Z F, et al. Intensified fire activity induced by aridification facilitated Late Miocene C4 plant expansion in the northeastern Tibetan Plateau, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573: 110437, doi: 10.1016/j.palaeo.2021.110437.
doi: 10.1016/j.palaeo.2021.110437
|
[34] |
Liu S P, Li J J, Stockli D, et al. Late Tertiary reorganizations of deformation in northeastern Tibet constrained by stratigraphy and provenance data from eastern Longzhong Basin[J]. Journal of Geophysical Research Solid Earth, 2015, 120(8): 5804-5821.
doi: 10.1002/2015JB011949
|
[35] |
Li J J, Feng Z D. Late Quaternary monsoon patterns on the Loess Plateau of China[J]. Earth Surface Processes and Landforms, 1988, 13: 125-135.
doi: 10.1002/esp.3290130204
|
[36] |
Hui Z C, Li J J, Song C H, et al. Vegetation and climatic changes during the Middle Miocene in the Wushan Basin, northeastern Tibetan Plateau: Evidence from a high-resolution palynological record[J]. Journal of Asian Earth Sciences, 2017, 147: 116-127.
doi: 10.1016/j.jseaes.2017.07.008
|
[37] |
Wang Z C, Zhang P Z, Garzione C N, et al. Magnetostratigraphy and depositional history of the Miocene Wushan Basin on the NE Tibetan Plateau, China: Implications for middle Miocene tectonics of the west Qinling fault zone[J]. Journal of Asian Earth Sciences, 2012, 44: 189-202.
doi: 10.1016/j.jseaes.2011.06.009
|
[38] |
何况. 武山地区中新世磁性地层年代及气候变化研究[D]. 兰州: 兰州大学, 2013.
|
|
[ He Kuang. Magnetostratigraphy and paleoclimatic significance of Miocene sediment in Wushan Region[D]. Lanzhou: Lanzhou University, 2013. ]
|
[39] |
Maher L J. Statistics for microfossil concentration measurements employing samples spiked with marker grains[J]. Review of Palaeobotany and Palynology, 1981, 32(2): 153-191.
doi: 10.1016/0034-6667(81)90002-6
|
[40] |
王梓莎, 赵永涛, 苗运法, 等. 以孢粉学方法为例浅论黄土沉积物中微体炭屑的统计问题[J]. 干旱区地理, 2020, 43(3): 661-670.
|
|
[ Wang Zisha, Zhao Yongtao, Miao Yunfa, et al. Statistical problem of microcharcoal in loess sediments based on the pollen methodology[J]. Arid Land Geography, 2020, 43(3): 661-670. ]
|
[41] |
Umbanhowar C E, Mcgrath M J. Experimental production and analysis of microscopic charcoal from wood, leaves and grasses[J]. Holocene, 1998, 8(3): 341-346.
doi: 10.1191/095968398666496051
|
[42] |
Earle C J, Brubaker L B, Anderson P M. Charcoal in northcentral Alaskan Lake sediments: Relationships to fire and late-Quaternary vegetation history[J]. Review of Palaeobotany & Palynology, 1996, 92(1-2): 83-95.
|
[43] |
Thinon C M. Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne valley (north French Alps): Methodology and preliminary data[J]. Review of Palaeobotany and Palynology, 1996, 91(1): 399-416.
doi: 10.1016/0034-6667(95)00060-7
|
[44] |
Marlon J R. Wildfire responses to abrupt climate change in North America[J]. Proceedings of the National Academy of Sciences, 2009, 106(8): 2519-2524.
doi: 10.1073/pnas.0808212106
|
[45] |
Chandler C C, Roberts C F. Problems and priorities for forest fire research[J]. Journal of Forestry, 1973, 71(10): 625-626.
|
[46] |
Clark J S. Effect of climate change on fire regimes in northwestern Minnesota[J]. Nature, 1988, 334(6179): 233-235.
doi: 10.1038/334233a0
|
[47] |
Neary D G, Klopatek C C, Debano L F, et al. Fire effects on belowground sustainability: A review and synthesis[J]. Forest Ecology and Management, 1999, 122(1): 51-71.
doi: 10.1016/S0378-1127(99)00032-8
|
[48] |
胡海清, 魏书精, 孙龙, 等. 气候变化、火干扰与生态系统碳循环[J]. 干旱区地理, 2013, 36(1): 57-75.
|
|
[ Hu Haiqing, Wei Shujing, Sun Long, et al. Interaction among climate change, fire disturbance and ecosystem carbon cycle[J]. Arid Land Geography, 2013, 36(1): 57-75. ]
|
[49] |
Belcher C M, Mander L, Rein G, et al. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change[J]. Nature Geoscience, 2010, 3(6): 426-429.
doi: 10.1038/ngeo871
|
[50] |
Li S F, Hughes A C, Su T, et al. Fire dynamics under monsoonal climate in Yunnan, SW China: Past, present and future[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 465: 168-176.
doi: 10.1016/j.palaeo.2016.10.028
|
[51] |
Lundeen Z J, Brunelle A. A 14,000-year record of fire, climate, and vegetation from the Bear River Range, southeast Idaho, USA[J]. The Holocene, 2016, 26(6): 833-842.
doi: 10.1177/0959683615622545
|
[52] |
Zachos J. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
pmid: 11326091
|
[53] |
Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279-283.
doi: 10.1038/nature06588
|
[54] |
Miller K G, Mountain G S. Drilling and dating New Jersey Oligocene-Miocene sequences: Ice volume, global sea level, and exxon records[J]. Science, 1996, 271(5252): 1092-1095.
doi: 10.1126/science.271.5252.1092
|
[55] |
Abels H A, Hilgen F J, Krijgsman W, et al. Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the blue clay formation on Malta[J]. Paleoceanography, 2005, 20(4): PA4012, doi: 10.1029/2004pa001129.
doi: 10.1029/2004pa001129
|
[56] |
Madelaine B. The Miocene climatic optimum: Evidence from ectothermic vertebrates of central Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(3): 389-401.
doi: 10.1016/S0031-0182(03)00367-5
|