收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2026, Vol. 49 ›› Issue (1): 47-55.doi: 10.12118/j.issn.1000-6060.2025.045 cstr: 32274.14.ALG2025045

• 气候与水文 • 上一篇    下一篇

阿克达拉站PM10和PM2.5质量浓度长期变化趋势及短期升高事件研究

李佳林1(), 钟玉婷2, 董垠希1, 蔡海洋1, 陶瑞1   

  1. 1 阿克达拉区域大气本底站,新疆 阿勒泰 836000
    2 中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
  • 收稿日期:2025-01-21 修回日期:2025-04-26 出版日期:2026-01-25 发布日期:2026-01-18
  • 作者简介:李佳林(1993-),女,工程师,主要从事大气成分和温室气体研究以及综合气象观测方面的研究. E-mail: jialin51058@163.com
  • 基金资助:
    中国气象沙漠气象研究基金项目(Sqj2023012)

Long-term variation trends and short-term elevation events of PM10 and PM2.5 mass concentrations at Akedala station

LI Jialin1(), ZHONG Yuting2, DONG Yinxi1, CAI Haiyang1, TAO Rui1   

  1. 1 Akedala Atmospheric Background Station, Altay 836000, Xinjiang, China
    2 Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China
  • Received:2025-01-21 Revised:2025-04-26 Published:2026-01-25 Online:2026-01-18

摘要:

基于2011—2023年阿克达拉区域大气本底站PM10和PM2.5连续观测数据,采用统计分析、气象相关性分析、HYSPLIT-4模型及潜在源贡献因子(PSCF)和浓度权重轨迹(CWT)等方法,分析了PM10和PM2.5质量浓度变化趋势和来源特征。结果表明:(1)2011—2023年阿克达拉站PM10年均质量浓度从12.1 μg·m-3增至23.2 μg·m-3,PM2.5年均质量浓度从7.3 μg·m-3增至10.8 μg·m-3,年均增长率分别为0.81 μg·m-3·a-1和0.31 μg·m-3·a-1,PM10增长率高于PM2.5。(2)PM10和PM2.5质量浓度呈现春冬高、夏秋低的季节变化;PM2.5/PM10比值呈双峰分布(0.4~0.5和0.8~0.9),低比值反映自然源贡献,高比值反映人为源贡献。(3)气团轨迹分析显示,PM10主要来源于哈萨克斯坦东部干旱区(PSCF值0.4~0.7),PM2.5主要来源于新疆北部人为源区域(PSCF值0.5~0.8)。(4)2023年共识别出PM10高浓度事件4次(峰值范围681.1~822.6 μg·m-3)和PM2.5高浓度事件5次(峰值范围294.2~551.4 μg·m-3),事件持续时间通常小于1 h,呈现“短时高强度”特征。(5)与临安站对比,阿克达拉站PM10和PM2.5质量浓度呈现“低基准、高波动、短峰值”特点,基准浓度低于临安站,但峰值浓度更高。研究结果可为干旱区大气本底颗粒物污染特征认识和跨境传输规律分析提供科学依据,有助于推动西北地区大气环境质量评估和区域协同治理。

关键词: PM2.5, PM10, 污染特征, 时间变化, 区域传输

Abstract:

Based on continuous observations of PM10 and PM2.5 at the Akedala regional atmospheric background station from 2011 to 2023, we employed statistical and meteorological correlation analyses, the HYSPLIT-4 model, the potential source contribution function (PSCF), and the concentration-weighted trajectory (CWT) method to investigate the variation trends and source characteristics of PM10 and PM2.5 mass concentrations. The results showed that: (1) From 2011 to 2023, the annual average mass concentration of PM10 increased from 12.1 μg·m-3 to 23.2 μg·m-3, while PM2.5 increased from 7.3 μg·m-3 to 10.8 μg·m-3, with annual growth rates of 0.81 μg·m-3·a-1 and 0.31 μg·m-3·a-1, respectively, indicating that PM10 increased faster than PM2.5. (2) PM10 and PM2.5 exhibited clear seasonal variations, with higher values in spring and winter and lower values in summer and autumn. The PM2.5/PM10 ratio displayed a bimodal distribution (0.4-0.5 and 0.8-0.9), where lower ratios indicated natural contributions and higher ratios reflected anthropogenic sources. (3) Air mass trajectory analysis suggested that PM10 primarily originated from eastern arid regions of Kazakhstan (PSCF values 0.4-0.7), whereas PM2.5 mainly came from anthropogenic sources in northern Xinjiang (PSCF values 0.5-0.8). (4) In 2023, four high-concentration PM10 events (peaks 681.1-822.6 μg·m-3) and five high-concentration PM2.5 events (peaks 294.2-551.4 μg·m-3) were observed, with durations typically less than one hour, exhibiting “short-term high-intensity” characteristics. (5) Compared with Lin’an station, PM10 and PM2.5 at Akedala showed “low baseline, high variability, and short peaks”, with baseline values lower than Lin’an but higher peak concentrations. This study provides a scientific basis for understanding atmospheric background particulate matter in arid regions and analyzing transboundary transport patterns, supporting air quality assessment and regional collaborative governance in northwest China.

Key words: PM2.5, PM10, pollution characteristics, temporal variation, regional transport