[1] |
金令, 王永芳, 郭恩亮, 等. 基于SPEIbase v.2.6数据集的内蒙古旱灾危险性评价[J]. 干旱区地理, 2022, 45(3): 695-705.
|
|
[Jin Ling, Wang Yongfang, Guo Enliang, et al. Evaluation of drought hazards in Inner Mongolia based on SPEIbase v.2.6 dataset[J]. Arid Land Geography, 2022, 45(3): 695-705. ]
|
[2] |
洪兴骏, 郭生练. 长江上游水文干旱评估及其不确定性分析[J]. 中国防汛抗旱, 2018, 28(10): 14-20.
|
|
[Hong Xingjun, Guo Shenglian. Hydrological drought assessment and uncertainty analysis for the upper Yangtze River[J]. China Flood & Drought Management, 2018, 28(10): 14-20. ]
|
[3] |
张瑞涵, 王义民, 郭爱军. 样本不确定性对基于SPI干旱评估的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(11): 134-142, 154.
|
|
[Zhang Ruihan, Wang Yimin, Guo Aijun. Impact of sample uncertainty on SPI index based drought evaluation[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(11): 134-142, 154. ]
|
[4] |
Guttman N B. Accepting the standardized precipitation index: A calculation algorithm[J]. Journal of the American Water Resources Association, 1999, 35(2): 311-322.
doi: 10.1111/j.1752-1688.1999.tb03592.x
|
[5] |
洪兴骏, 郭生练, 周研来. 标准化降水指数SPI分布函数的适用性研究[J]. 水资源研究, 2013, 2(1): 33-41.
doi: 10.12677/JWRR.2013.21006
|
|
[Hong Xingjun, Guo Shenglian, Zhou Yanlai. Applicability of standardized precipitation index with alternative distribution functions[J]. Journal of Water Resources Research, 2013, 2(1): 33-41. ]
doi: 10.12677/JWRR.2013.21006
|
[6] |
Sienz F, Bothe O, Fraedrich K. Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias[J]. Hydrology and Earth System Sciences, 2011, 8(6): 10635-10677.
|
[7] |
Gabriel C B, Monica C M. Inadequacy of the gamma distribution to calculate the standardized precipitation index[J]. Revista Brasileira de Engenharia Agrícola e Ambiental-Agriambi, 2015, 19(12): 1129-1135.
|
[8] |
Stagge J H, Tallaksen L M, Gudmundsson L, et al. Candidate distributions for climatological drought indices (SPI and SPEI)[J]. International Journal of Climatology, 2015, 35(13): 4027-4040.
doi: 10.1002/joc.4267
|
[9] |
Begueria S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10): 3001-3023.
doi: 10.1002/joc.3887
|
[10] |
张经天, 席海洋. 荒漠河岸林地下水位时空动态及其对地表径流的响应[J]. 干旱区地理, 2020, 43(2): 388-397.
|
|
[Zhang Jingtian, Xi Haiyang. Spatiotemporal dynamics of groundwater levels in a desert riparian forest and its response to surface runoff[J]. Arid Land Geography, 2020, 43(2): 388-397. ]
|
[11] |
任朝霞, 陆玉麒, 杨达源. 近2000年黑河流域旱涝变化研究[J]. 干旱区资源与环境, 2009, 23(4): 90-93.
|
|
[Ren Chaoxia, Lu Yuqi, Yang Dayuan. Study on drought and flood changes in recent 2000 a in Heihe River Basin[J]. Journal of Arid Land Resources and Environment, 2009, 23(4): 90-93. ]
|
[12] |
曹玲, 窦永祥, 张德玉. 气候变化对黑河流域生态环境的影响[J]. 干旱气象, 2003, 21(4): 45-49.
|
|
[Cao Ling, Dou Yongxiang, Zhang Deyu. Effect of climate change on ecological environment of Heihe Field[J]. Journal of Arid Meteorology, 2003, 21(4): 45-49. ]
|
[13] |
张莹. 两种典型气象干旱指数的不确定性分析——以黑河流域为例[D]. 北京: 中国地质大学(北京), 2020.
|
|
[Zhang Ying. Uncertainty analysis of two typical meteorological drought indexes: A case study in Heihe River Basin[D]. Beijing: China University of Geosciences (Beijing), 2020. ]
|
[14] |
Feng Q, Cheng G D, Endo K N. Towards sustainable development of the environmentally degraded River Heihe Basin, China[J]. Hydrological Sciences Journal, 2001, 46(5): 647-658.
doi: 10.1080/02626660109492862
|
[15] |
刘浏, 刘丽丽, 索滢. 近53 a黑河流域水文气象要素时空演变特征[J]. 干旱区研究, 2017, 34(3): 465-478.
|
|
[ Liu Liu, Liu Lili, Suo Ying. Spatiotemporal evolution of hydro-meteorological variables in the Heihe River Basin in recent 53 years[J]. Arid Zone Research, 2017, 34(3): 465-478. ]
|
[16] |
Vicente-Serrano S M, Begueria S, Lopezmoreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718.
doi: 10.1175/2009JCLI2909.1
|
[17] |
Yevjevich V. An objective approach to definitions and investigations of continental hydrologic droughts[J]. Journal of Hydrology, 1969, 7(3): 353, doi: 10.1016/0022-1694(69)90110-3.
doi: 10.1016/0022-1694(69)90110-3
|
[18] |
Fadhilah Y, Foo H M, Jamaludin S. Rainfall characterisation by application of standardised precipitation index (SPI) in Peninsular Malaysia[J]. Theoretical & Applied Climatology, 2014, 115(3-4): 503-516.
|
[19] |
Nixon R M, Wonderling D, Grieve R D. Non-parametric methods for cost effectiveness analysis: The central limit theorem and the bootstrap compared[J]. Health Economics, 2010, 19(3): 316-333.
doi: 10.1002/hec.1477
|
[20] |
Degeling K, Ijzerman M J, Koopman M, et al. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models[J]. Bmc Medical Research Methodology, 2017, 17: 170, doi: 10.1186/s12874-017-0437-y.
doi: 10.1186/s12874-017-0437-y
pmid: 29246192
|
[21] |
Vergni L, Di L B, Todisco F, et al. Uncertainty in drought monitoring by the standardized precipitation index: The case study of the Abruzzo region (central Italy)[J]. Theoretical and Applied Climatology, 2017, 128: 13-26.
doi: 10.1007/s00704-015-1685-6
|
[22] |
Laimighofer J, Laaha G. How standard are standardized drought indices? Uncertainty contributions for the SPI & SPEI case[J]. EGU General Assembly, 2020: EGU2020-4716, doi: 10.5194/egusphere-egu2020-4716.
doi: 10.5194/egusphere-egu2020-4716
|
[23] |
Zhang Y, Li Z. Uncertainty analysis of standardized precipitation index due to the effects of probability distributions and parameter errors[J]. Frontiers in Earth Science, 2020, 8: 76, doi: 10.3389/feart.2020.00076.
doi: 10.3389/feart.2020.00076
|
[24] |
Aadhar S, Mishra V. Increased drought risk in South Asia under warming climate: Implications of uncertainty in potential evapotranspiration estimates[J]. Journal of Hydrometeorology, 2020, 21(12): 2979-2996.
doi: 10.1175/JHM-D-19-0224.1
|