干旱区地理 ›› 2021, Vol. 44 ›› Issue (2): 379-388.doi: 10.12118/j.issn.1000–6060.2021.02.09
高瑜1,2(),李小平1,2(),张钰超1,2,曹瑜函1,2,李涛1,2,杨涛1,2,王利军1,2
收稿日期:
2019-12-15
修回日期:
2021-01-18
出版日期:
2021-03-25
发布日期:
2021-04-14
通讯作者:
李小平
作者简介:
高瑜(1994-),男,博士研究生,研究方向为生态环境评价与修复. E-mail:基金资助:
GAO Yu1,2(),LI Xiaoping1,2(),ZHANG Yuchao1,2,CAO Yuhan1,2,LI Tao1,2,YANG Tao1,2,WANG Lijun1,2
Received:
2019-12-15
Revised:
2021-01-18
Online:
2021-03-25
Published:
2021-04-14
Contact:
Xiaoping LI
摘要:
通过采集兰州市和延安市主城区的土壤灰尘样品,测量了其粒径组成,界定了土壤和灰尘不同粒径的空间分布,分析了环境影响。结果表明:兰州市和延安市城市土壤灰尘粒径组成有明显的分布特征,主要集中在小于100βμm的部分,整体粒径分布情况为:粉黏粒(<50βμm)>极细砂(50~100βμm)>细砂(100~250βμm)>中砂(250~500βμm)>粗砂(500~1000βμm)。其中兰州市小于100βμm灰尘颗粒物粒径所占比例(69.17%)大于延安市(53.49%),极易在外动力条件下再次扬起成为扬尘污染的潜在污染源。从2个城市土壤和灰尘<PM10粒径组分空间分布特征来看,同粒度的上风向城市土壤是同粒度下风向的城市灰尘的潜在来源,工业活动对土壤小粒径组分的影响可能更大,频繁的人类活动对灰尘小粒径组分的影响可能更大。
高瑜,李小平,张钰超,曹瑜函,李涛,杨涛,王利军. 中国西部河谷型城市土壤与灰尘粒级组分分布特征[J]. 干旱区地理, 2021, 44(2): 379-388.
GAO Yu,LI Xiaoping,ZHANG Yuchao,CAO Yuhan,LI Tao,YANG Tao,WANG Lijun. Spatial distribution of particle fractionations of dust and soil in the valley-city of northwest China[J]. Arid Land Geography, 2021, 44(2): 379-388.
表1
兰州市土壤粒径组成"
区域 | 参数 | 粒级划分/μm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1~1 | 1~2.5 | 2.5~5 | 5~10 | 10~50 | 50~100 | 100~250 | 250~500 | 500~800 | 800~1000 | 1000~2000 | ||
城关区 | 占比/% | 1.83 | 2.75 | 3.46 | 5.78 | 36.40 | 18.84 | 13.75 | 10.39 | 4.94 | 1.06 | 0.80 |
变异系数/% | 35.90 | 37.82 | 37.05 | 37.14 | 29.69 | 23.48 | 41.11 | 65.47 | 93.31 | 163.84 | 274.44 | |
极差/μm | 2.95 | 4.73 | 5.60 | 9.46 | 44.31 | 19.98 | 25.90 | 27.67 | 19.15 | 6.93 | 12.71 | |
标准差/μm | 0.66 | 1.04 | 1.28 | 2.15 | 10.81 | 4.42 | 5.65 | 6.80 | 4.61 | 1.74 | 2.21 | |
七里河区 | 占比/% | 2.01 | 2.96 | 3.66 | 6.02 | 40.12 | 20.04 | 11.06 | 8.59 | 4.29 | 0.81 | 0.43 |
变异系数/% | 34.36 | 33.93 | 31.03 | 29.11 | 27.57 | 22.12 | 50.15 | 88.35 | 116.63 | 185.48 | 261.16 | |
极差/μm | 2.61 | 3.86 | 4.32 | 6.52 | 39.29 | 18.33 | 20.70 | 28.49 | 20.26 | 6.28 | 4.88 | |
标准差/μm | 0.69 | 1.01 | 1.14 | 1.75 | 11.06 | 4.43 | 5.55 | 7.59 | 5.00 | 1.51 | 1.12 | |
西固区 | 占比/% | 2.04 | 3.01 | 3.78 | 6.25 | 41.22 | 20.82 | 11.63 | 7.01 | 3.05 | 0.61 | 0.59 |
变异系数/% | 26.43 | 27.70 | 26.71 | 26.26 | 22.51 | 18.10 | 36.56 | 68.09 | 131.40 | 253.30 | 274.25 | |
极差/μm | 2.18 | 3.74 | 4.40 | 6.62 | 32.03 | 12.85 | 16.08 | 18.39 | 14.20 | 4.90 | 5.42 | |
标准差/μm | 0.54 | 0.83 | 1.01 | 1.64 | 9.28 | 3.77 | 4.25 | 4.77 | 4.01 | 1.56 | 1.61 | |
安宁区 | 占比/% | 2.11 | 3.30 | 4.12 | 6.76 | 40.26 | 19.86 | 12.61 | 7.31 | 2.87 | 0.50 | 0.29 |
变异系数/% | 25.73 | 27.88 | 27.14 | 26.06 | 18.30 | 13.72 | 34.68 | 58.38 | 105.97 | 205.58 | 289.49 | |
极差/μm | 1.61 | 2.92 | 3.71 | 6.06 | 23.00 | 8.99 | 15.35 | 13.73 | 10.91 | 3.72 | 3.16 | |
标准差/μm | 0.54 | 0.92 | 1.12 | 1.76 | 7.37 | 2.72 | 4.37 | 4.27 | 3.04 | 1.03 | 0.84 |
表2
延安市城市土壤粒径分布"
区域 | 参数 | 粒级划分/μm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1~1 | 1~2.5 | 2.5~5 | 5~10 | 10~50 | 50~100 | 100~250 | 250~500 | 500~800 | 800~1000 | 1000~2000 | ||
西北 | 占比/% | 1.85 | 2.80 | 3.49 | 5.53 | 36.66 | 20.01 | 9.16 | 10.70 | 6.93 | 1.73 | 1.14 |
变异系数/% | 30.69 | 34.96 | 33.28 | 28.49 | 19.35 | 24.24 | 41.61 | 49.14 | 67.63 | 97.73 | 116.53 | |
极差/μm | 1.74 | 3.14 | 3.85 | 5.12 | 19.22 | 13.50 | 14.06 | 15.99 | 14.80 | 5.19 | 3.61 | |
标准差/μm | 0.57 | 0.98 | 1.16 | 1.58 | 7.09 | 4.85 | 3.81 | 5.26 | 4.69 | 1.69 | 1.33 | |
城南 | 占比/% | 2.18 | 3.55 | 4.41 | 6.96 | 40.04 | 18.59 | 8.04 | 9.39 | 5.31 | 0.97 | 0.56 |
变异系数/% | 27.44 | 33.96 | 28.62 | 21.25 | 13.97 | 16.11 | 29.51 | 46.23 | 57.95 | 111.73 | 146.30 | |
极差/μm | 2.02 | 4.02 | 4.23 | 4.98 | 17.22 | 9.74 | 7.30 | 14.08 | 9.78 | 3.12 | 2.25 | |
标准差/μm | 0.60 | 1.20 | 1.26 | 1.48 | 5.59 | 3.00 | 2.37 | 4.34 | 3.08 | 1.08 | 0.82 | |
城中 | 占比/% | 1.63 | 2.61 | 3.31 | 5.30 | 33.75 | 17.42 | 9.76 | 14.39 | 8.77 | 2.03 | 1.03 |
变异系数/% | 47.23 | 48.47 | 48.50 | 45.18 | 36.71 | 31.32 | 30.59 | 74.97 | 89.43 | 109.40 | 129.98 | |
极差/μm | 2.59 | 4.10 | 5.18 | 7.56 | 39.89 | 17.40 | 7.59 | 33.05 | 21.73 | 6.38 | 3.83 | |
标准差/μm | 0.77 | 1.26 | 1.60 | 2.39 | 12.39 | 5.46 | 2.99 | 10.79 | 7.84 | 2.22 | 1.34 | |
东北 | 占比/% | 2.10 | 3.08 | 3.87 | 6.55 | 40.64 | 19.28 | 8.79 | 9.68 | 5.04 | 0.80 | 0.17 |
变异系数/% | 33.46 | 33.41 | 30.87 | 28.84 | 19.97 | 16.91 | 38.30 | 69.45 | 74.77 | 123.45 | 195.55 | |
极差/μm | 2.44 | 3.32 | 3.77 | 5.92 | 27.45 | 11.86 | 10.56 | 22.81 | 12.46 | 3.24 | 1.10 | |
标准差/μm | 0.70 | 1.03 | 1.20 | 1.89 | 8.11 | 3.26 | 3.36 | 6.72 | 3.77 | 0.99 | 0.34 |
表3
兰州市城市灰尘粒径分布"
区域 | 参数 | 粒级划分/μm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1~1 | 1~2.5 | 2.5~5 | 5~10 | 10~50 | 50~100 | 100~250 | 250~500 | 500~800 | 800~1000 | 1000~2000 | ||
城关区 | 占比/% | 1.69 | 2.29 | 2.60 | 3.65 | 35.41 | 22.68 | 19.65 | 10.51 | 1.52 | 0.01 | 0.00 |
变异系数/% | 29.09 | 28.19 | 28.73 | 30.94 | 28.05 | 17.37 | 36.34 | 45.20 | 66.07 | 623.34 | 0.00 | |
极差/μm | 2.59 | 3.60 | 3.70 | 4.48 | 49.63 | 17.72 | 32.35 | 21.45 | 4.72 | 0.29 | 0.18 | |
标准差/μm | 0.49 | 0.64 | 0.75 | 1.13 | 9.93 | 3.94 | 7.14 | 4.75 | 1.01 | 0.04 | 0.03 | |
七里河区 | 占比/% | 1.61 | 2.12 | 2.37 | 3.27 | 36.16 | 23.19 | 18.43 | 11.10 | 1.74 | 0.00 | 0.00 |
变异系数/% | 31.75 | 31.31 | 30.64 | 31.87 | 28.93 | 21.89 | 42.43 | 58.42 | 65.59 | 0.00 | 0.00 | |
极差/μm | 2.22 | 2.60 | 2.90 | 4.47 | 44.75 | 16.71 | 30.79 | 23.62 | 4.26 | 0.01 | 0.00 | |
标准差/μm | 0.51 | 0.66 | 0.73 | 1.04 | 10.46 | 5.08 | 7.82 | 6.49 | 1.14 | 0.00 | 0.00 | |
西固区 | 占比/% | 1.73 | 2.11 | 2.39 | 3.29 | 40.32 | 25.36 | 15.52 | 7.99 | 1.23 | 0.03 | 0.04 |
变异系数/% | 16.41 | 17.75 | 20.13 | 25.22 | 17.46 | 9.96 | 31.52 | 30.48 | 42.88 | 411.38 | 412.31 | |
极差/μm | 2.27 | 2.88 | 3.39 | 5.45 | 52.62 | 29.35 | 23.50 | 12.38 | 2.26 | 0.47 | 0.78 | |
标准差/μm | 0.28 | 0.37 | 0.48 | 0.83 | 7.04 | 2.53 | 4.89 | 2.44 | 0.53 | 0.11 | 0.18 | |
安宁区 | 占比/% | 1.42 | 1.92 | 2.19 | 3.06 | 31.67 | 24.18 | 22.15 | 11.63 | 1.78 | 0.00 | 0.00 |
变异系数/% | 28.90 | 26.77 | 25.80 | 26.10 | 26.14 | 15.28 | 30.41 | 49.39 | 66.56 | 0.00 | 0.00 | |
极差/μm | 1.44 | 1.75 | 1.87 | 2.56 | 27.91 | 12.08 | 24.81 | 18.34 | 4.40 | 0.00 | 0.00 | |
标准差/μm | 0.41 | 0.51 | 0.56 | 0.80 | 8.28 | 3.69 | 6.74 | 5.74 | 1.19 | 0.00 | 0.00 |
表4
延安市城市灰尘粒径分布"
区域 | 参数 | 粒级划分/μm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1~1 | 1~2.5 | 2.5~5 | 5~10 | 10~50 | 50~100 | 100~250 | 250~500 | 500~800 | 800~1000 | 1000~2000 | ||
西北 | 占比/% | 1.27 | 1.78 | 1.87 | 2.61 | 24.71 | 24.59 | 23.52 | 16.48 | 3.18 | 0.00 | 0.00 |
变异系数/% | 25.77 | 19.59 | 21.22 | 22.27 | 32.86 | 25.33 | 29.54 | 43.89 | 48.24 | 0.00 | 0.00 | |
极差/μm | 0.96 | 1.08 | 1.32 | 1.94 | 23.44 | 21.51 | 20.28 | 24.80 | 5.51 | 0.01 | 0.00 | |
标准差/μm | 0.33 | 0.35 | 0.40 | 0.58 | 8.12 | 6.23 | 6.95 | 7.23 | 1.53 | 0.00 | 0.00 | |
城南 | 占比/% | 1.12 | 1.59 | 1.66 | 2.29 | 21.55 | 20.84 | 26.08 | 20.95 | 3.92 | 0.00 | 0.00 |
变异系数/% | 30.64 | 29.81 | 30.11 | 25.73 | 28.73 | 26.40 | 19.09 | 29.88 | 33.83 | 0.00 | 0.00 | |
极差/μm | 1.14 | 1.53 | 1.61 | 1.85 | 20.28 | 16.40 | 14.50 | 17.52 | 3.63 | 0.00 | 0.00 | |
标准差/μm | 0.34 | 0.47 | 0.50 | 0.59 | 6.19 | 5.50 | 4.98 | 6.26 | 1.33 | 0.00 | 0.00 | |
城中 | 占比/% | 1.23 | 1.69 | 1.75 | 2.46 | 25.34 | 23.56 | 23.74 | 17.07 | 3.15 | 0.00 | 0.00 |
变异系数/% | 34.10 | 21.94 | 21.53 | 20.80 | 48.26 | 31.70 | 36.94 | 55.52 | 58.24 | 0.00 | 0.00 | |
极差/μm | 1.62 | 1.35 | 1.33 | 1.85 | 45.12 | 22.99 | 32.03 | 30.85 | 6.91 | 0.00 | 0.00 | |
标准差/μm | 0.42 | 0.37 | 0.38 | 0.51 | 12.23 | 7.47 | 8.77 | 9.48 | 1.84 | 0.00 | 0.00 | |
东北 | 占比/% | 1.18 | 1.70 | 1.77 | 2.46 | 23.03 | 21.92 | 23.98 | 19.81 | 4.15 | 0.00 | 0.00 |
变异系数/% | 45.11 | 39.63 | 40.85 | 36.63 | 45.39 | 22.36 | 29.79 | 44.42 | 53.36 | 0.00 | 0.00 | |
极差/μm | 1.92 | 2.25 | 2.36 | 2.87 | 38.10 | 16.96 | 25.79 | 33.16 | 8.48 | 0.01 | 0.00 | |
标准差/μm | 0.53 | 0.67 | 0.72 | 0.90 | 10.46 | 4.90 | 7.14 | 8.80 | 2.21 | 0.00 | 0.00 |
[1] | 胡宏昌, 田富强, 胡和平. 新疆膜下滴灌土壤粒径分布及与水盐含量的关系[J]. 中国科学: 技术科学, 2011,41(8):1035-1042. |
[ Hu Hongchang, Tian Fuqiang, Hu Heping. Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China[J]. Scientia Sinica Technologica, 2011,41(8):1035-1042. ] | |
[2] | 郭中领, 符素华, 王向亮, 等. 北京地区表层土壤分形特征研究[J]. 水土保持通报, 2010,30(2):154-158. |
[ Guo Zhongling, Fu Suhua, Wang Xiangliang, et al. Fractal dimension characteristic of soil particle-size distribution in Beijing region[J]. Bulletin of Soil and Water Conservation, 2010,30(2):154-158. ] | |
[3] | 王陇, 高广磊, 张英, 等. 毛乌素沙地风沙土粒径分布特征及其影响因素[J]. 干旱区地理, 2019,42(5):1003-1010. |
[ Wang Long, Gao Guanglei, Zhang Ying, et al. Particle size distribution of aeolian soils in the Mu Us Sandy Land and the influence factors[J]. Arid Land Geography, 2019,42(5):1003-1010. ] | |
[4] | 杜佩轩, 田晖, 韩永明. 城市灰尘概念、研究内容与方法[J]. 陕西地质, 2004,22(1):73-79. |
[ Du Peixuan, Tian Hui, Han Yongming. Concept, research content and method of urban dust[J]. Geology of Shaanxi, 2004,22(1):73-79. ] | |
[5] | Shi Guitao, Chen Zhenluo, Bi Chunjuan, et al. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China[J]. Atmospheric Environment, 2011,45(3):764-771. |
[6] |
Charlesworth S, Everett M, Mccarthy R, et al. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, west Midlands, UK[J]. Environment International, 2003,29(5):563-573.
doi: 10.1016/S0160-4120(03)00015-1 pmid: 12742399 |
[7] | 李小平, 吴婷, 王继文, 等. 城市土壤重金属研究进展[J]. 国外医学(医学地理分册), 2016,37(3):195-212. |
[ Li Xiaoping, Wu Ting, Wang Jiwen, et al. Review of heavy metals in urban soils[J]. Foreign Medical Sciences(Section of Medgeography), 2016,37(3):195-212. ] | |
[8] | Mankin K R, Ward A D, Boone K M. Quantifying changes in soil physical properties from soil and crop management: A survey of experts[J]. Transactions of the Asae American Society of Agricultural Engineers, 1996,39(6):2065-2074. |
[9] | Keshavarzi B, Najmeddin A, Moore F, et al. Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran[J]. Ecotoxicology and Environmental Safety, 2019,167(1):365-375. |
[10] | Barsova N, Yakimenko O, Tolpeshta I, et al. Current state and dynamics of heavy metal soil pollution in Russian Federation: A review[J]. Environmental Pollution, 2019,249(6):200-207. |
[11] | Swallow M J B, O’sullivan G. Biomimicry of vascular plants as a means of saline soil remediation[J]. Science of the Total Environment, 2019,655(10):84-91. |
[12] |
Ljung K, Otabbong E, Selinus O. Natural and anthropogenic metal inputs to soils in urban Uppsala Sweden[J]. Environmental Geochemistry and Health, 2006,28(4):353-364.
doi: 10.1007/s10653-005-9031-z pmid: 16724242 |
[13] | 吴珊珊, 孙慧兰, 周永超, 等. 伊宁市道路土壤重金属污染现状及其环境质量评价[J]. 干旱区研究, 2019,36(3):752-760. |
[ Wu Shanshan, Sun Huilan, Zhou Yongchao, et al. Heavy metal pollution in urban soil and environment quality in Yining[J]. Arid Zone Research, 2019,36(3):752-760. ] | |
[14] | 米晓军, 任雯, 雒琼, 等. 新疆准噶尔盆地未开垦盐碱地土壤重金属评价及其来源[J]. 干旱区研究, 2019,36(4):824-834. |
[ Mi Xiaojun, Ren Wen, Luo Qiong, et al. Evaluation and their sources of heavy metals in uncultivated saline-alkaline soil in the Junggar Basin, Xinjiang[J]. Arid Zone Research, 2019,36(4):824-834. ] | |
[15] | Zou Xueyong, Li Huiru, Liu Wei, et al. Application of a new wind driving force model in soil wind erosion area of northern China[J]. Journal of Arid Land, 2020,12(3):423-435. |
[16] | 李乃健, 李冰, 冉丕鑫. 大气颗粒物对肺部微生态的影响及在慢性阻塞性肺疾病发病中的作用[J]. 中国呼吸与危重监护杂志, 2018,17(2):206-209. |
[ Li Naijian, Li Bin, Ran Pixin. Effect of atmospheric particulate matter on pulmonary microecology and its role in the pathogenesis of chronic obstructive pulmonary disease[J]. Chinese Journal of Respiratory and Critical Care Medicine, 2018,17(2):206-209. ] | |
[17] | 朱梦婵, 陈小燕, 潘珏. 大气颗粒物与呼吸系统疾病研究进展[J]. 国际呼吸杂志, 2017,37(11):859-862. |
[ Zhu Mengchan, Chen Xiaoyan, Pan Yu. Relationship between atmospheric matter and respiratory diseases[J]. International Journal of Respiration, 2017,37(11):859-862. ] | |
[18] | 张彩云, 庞奖励, 常美蓉, 等. 农业耕作土壤与人工经济林地土壤磁化率和质地特征对比[J]. 土壤与作物, 2009,25(1):91-94. |
[ Zhang Caiyun, Pang Jiangli, Chang Meirong, et al. Comparative research on soil granularity and magnetic susceptibility of the cultivated soil and anthropogenic forest soil[J]. Soil and Crop, 2009,25(1):91-94. ] | |
[19] | Zhang Mingxin, Lu Xinwei, Shi Dongqi, et al. Toxic metal enrichment characteristics and sources of arid urban surface soil in Yinchuan City, China[J]. Journal of Arid Land, 2018,10(4):653-662. |
[20] | Deletic A B, Orr D W. Pollution buildup on road surfaces[J]. Journal of Environmental Engineering, 2005,131(1):49-59. |
[21] | Ferreira-Baptista L, De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment[J]. Atmospheric Environment, 2005,39(25):4501-4512. |
[22] | 帕丽达·牙合甫, 杨鹏月. 乌鲁木齐市近几年大气颗粒物中重金属的浓度特征[J]. 干旱区地理, 2019,42(3):492-498. |
[ Yahefu Palida, Yang Pengyue. Concentration characteristics of heavy metals in the atmospheric particles in Urumqi City in recent years[J]. Arid Land Geography, 2019,42(3):492-498. ] | |
[23] | 赵敬国, 王式功, 张天宇, 等. 兰州市大气重污染气象成因分析[J]. 环境科学学报, 2015,35(5):1547-1555. |
[ Zhao Jingguo, Wang Shigong, Zhang Tianyu, et al. The analysis of meteorological factors causing heavy air pollution in Lanzhou[J]. Acta Scientiae Circumstantiae, 2015,35(5):1547-1555. ] | |
[24] | Meng Caihong, Yang Yongchun, Liu Yanjun, et al. A GIS-based urban landscape change analysis of Lanzhou City, China[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011,8286(4):1-5. |
[25] | Zhang Yaqun, Li Min, Bravo M, et al. Air quality in Lanzhou, a major industrial city in China: Characteristics of air pollution and review of existing evidence from air pollution and health studies[J]. Water Air Soil Pollut, 2014,225(11), doi: 10.1007/s11270-014-2187-3. |
[26] | Williamm R E, Richard V P. The genesis, classification, and mapping of soils in urban areas[J]. Urban Ecosystems, 1997,1(4):217-228. |
[27] | 魏光普, 闫伟, 于晓燕, 等. 轻稀土尾矿库区植被修复的镧、铈富集植物筛选[J]. 林业科学, 2019,55(5):20-26. |
[ Wei Guangpu, Yan Wei, Yu Xiaoyan, et al. Selection of La and Ce hyper-tolerant plants for vegetation rehabilitation in light rare earth tailing[J]. Scientia Silvae Sinicae, 2019,55(5):20-26. ] | |
[28] | 高广磊, 丁国栋, 赵媛媛, 等. 四种粒径分级制度对土壤体积分形维数测定的影响[J]. 应用基础与工程科学学报, 2014(6):1060-1068. |
[ Gao Guanglei, Ding Guodong, Zhao Yuanyuan, et al. Effects of soil particle size classification system on calculating volume-based fractal dimension[J]. Journal of Basic Science and Engineering, 2014(6):1060-1068. ] | |
[29] | 潘美慧, 薛雯轩, 伍永秋, 等. 西藏定结地区爬坡沙丘粒度特征分析[J]. 干旱区地理, 2019,42(6):111-119. |
[ Pan Meihui, Xue Wenxuan, Wu Yongqiu, et al. Grain size characteristics of the climbing dunes in Dinggye area of Tibet[J]. Arid Land Geography, 2019,42(6):111-119. ] | |
[30] | 孙东怀, 鹿化煜, David Rea, 等. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 2000,11(3):327-336. |
[ Sun Donghuai, Lu Huayu, David Rea, et al. Bimode grain-size distribution of Chinese loess and its paleclimate implication[J]. Acta Sedimentologica Sinica, 2000,11(3):327-336. ] | |
[31] | 李占宏, 海春兴, 刘广通. 内蒙古土默特平原降尘特征研究[J]. 干旱区资源与环境, 2007,21(1):78-81. |
[ Li Zhanhong, Hai Chunxing, Liu Guangtong. Research on diameter characteristics of dust-fall in Tumote Plain Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2007,21(1):78-81. ] | |
[32] | 秦松, 南忠仁. 兰州市西固城区街道灰尘粒径特征及环境效应分析[J]. 环境影响评价, 2013,35(增刊1):15-17. |
[ Qin Song, Nan Zhongren. Assessment for particle size distribution and associated environment effects for street dust in Xigu District of Lanzhou, Gansu Province[J]. Environmental Impact Assessment, 2013,35(Suppl 1):15-17. ] | |
[33] | 李天杰, 赵烨, 张科利, 等. 土壤地理学[M]. 北京: 高等教育出版社, 2004: 130-131. |
[ Li Tianjie, Zhao Ye, Zhang Keli, et al. Soil geography[M]. Beijing: Higher Education Press, 2004: 130-131. ] | |
[34] | 杨忠平, 张强, 张梁, 等. 长春市城区近地表灰尘粒度特征及其环境意义[J]. 吉林大学学报(地球科学版), 2014,44(1):319-327. |
[ Yang Zhongping, Zhang Qiang, Zhang Liang, et al. Particle size character and environment implication of urban dust near the ground in Changchun City, China[J]. Journal of Jilin University (Earth Science Edition), 2014,44(1):319-327. ] | |
[35] | 张大年. 城市大气可吸入颗粒物的研究[J]. 上海环境科学, 1999,18(4):154-157. |
[ Zhang Danian. Study on inhalable particulates in urban ambient air[J]. Shanghai Environmental Sciences, 1999,18(4):154-157. ] | |
[36] | Kelly J, Thornton I, Simpson P R. Urban geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain[J]. Applied Geochemistry, 1996,11(1-2):363-370. |
[37] | 施泽明, 倪师军, 张成江. 成都市近地表大气尘的矿物学特征及其环境指示意义[J]. 矿物岩石, 2006,16(2):117-160. |
[ Shi Zeming, Ni Shijun, Zhang Chengjiang. The mineralogy character of the air dust near the ground in Chengdu and its environmental indication significance[J]. Journal of Mineralogy and Petrology, 2006,16(2):117-160. ] | |
[38] | 魏复盛, 胡伟, 滕恩江, 等. 空气污染与儿童呼吸系统患病率的相关分析[J]. 中国环境科学, 2000,20(3):220-224. |
[ Wei Fusheng, Hu Wei, Teng Enjiang, et al. Relation analysis of air pollution and children’s respiratory system disease prevalence[J]. China Environmental Science, 2000,20(3):220-224. ] | |
[39] | 谭继强, 丁明柱. 空间数据插值方法的评价[J]. 测绘与空间地理信息, 2004,27(4):11-13. |
[ Tan Jiqiang, Ding Mingzhu. An evaluation of spatial data interpolation methods[J]. Geomatics & Spatial Information Technology, 2004,27(4):11-13. ] | |
[40] | 杜毓龙, 贾根喜, 雷崇典. 延安城区大气污染特征及成因分析[J]. 陕西气象, 2004,13(4):32-35. |
[ Du Yulong, Jia Gengxi, Lei Chongdian. Characteristics and causes of air pollution in Yan’an City[J]. Journal of Shaanxi Meteorology, 2004,13(4):32-35. ] |
[1] | 张文斌, 张志斌. 基于扩展生态位理论的居住空间分异研究——以兰州市为例[J]. 干旱区地理, 2023, 46(8): 1376-1386. |
[2] | 张梦圆, 荣丽华, 李伊彤, 党慧. 基于“三生”空间的农牧交错区城市土地利用转型及生态环境效应分析——以包头市为例[J]. 干旱区地理, 2023, 46(6): 958-967. |
[3] | 晁勐, 张俊, 刘翔. 兰州市主城区房价分异及驱动因素研究[J]. 干旱区地理, 2022, 45(6): 2004-2012. |
[4] | 赵学伟,张志斌,冯斌,公维民,马晓敏,郭燕. 西北内陆中心城市物流企业空间分异及区位选择——以兰州市为例[J]. 干旱区地理, 2022, 45(5): 1671-1683. |
[5] | 沙国良,魏天兴,陈宇轩,傅彦超,任康. 黄土高原丘陵区典型植物群落土壤粒径分布特征[J]. 干旱区地理, 2022, 45(4): 1224-1234. |
[6] | 杜雨涵,赵海莉,原悦,李家亮,王家明. 居住环境剥夺测度及其对房价的影响——以兰州市为例[J]. 干旱区地理, 2022, 45(3): 966-975. |
[7] | 马鑫苗,徐华君,古丽娜尔·麦麦提. 土地利用功能转型及其生态环境效应研究——以吐鲁番市高昌区为例[J]. 干旱区地理, 2022, 45(2): 445-455. |
[8] | 帕茹克·吾斯曼江,郝晋珉,王楠,史云扬,张金懿,阿依吐尔逊·沙木西. 基于“三生”功能的土地利用转型及其生态环境效应——以尉犁县为例[J]. 干旱区地理, 2021, 44(6): 1612-1622. |
[9] | 陈宇轩, 张飞岳, 高广磊, 丁国栋, 张英, 刘雪锋. 科尔沁沙地樟子松人工林土壤粒径分布特征[J]. 干旱区地理, 2020, 43(4): 1051-1058. |
[10] | 陈龙, 张志斌, 常飞, 薛彩霞. 基于住房代理数据的城市社会阶层空间异构性研究——以兰州市为例[J]. 干旱区地理, 2019, 42(5): 1213-1220. |
[11] | 王 陇, 高广磊, 张 英, 丁国栋, 赵媛媛, 彭 玏. 毛乌素沙地风沙土粒径分布特征及其影响因素[J]. 干旱区地理, 2019, 42(5): 1003-1010. |
[12] | 张一达 , 刘学录 , 范亚红, 刘永康. 基于改进TOPSIS法的兰州市土地利用多功能性评价[J]. 干旱区地理, 2019, 42(2): 444-451. |
[13] | 余波,周英,刘祖涵,王海鹏. 基于混沌理论的兰州市近10 a空气污染指数时间序列分析[J]. 干旱区地理, 2014, 37(3): 570-578. |
[14] | 齐鹏,张仁陟,张伯尧,王晓娇. 兰州市土壤-蔬菜系统典型重金属空间评价及健康风险分析[J]. 干旱区地理, 2012, 35(01): 162-170. |
|