收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2022, Vol. 45 ›› Issue (6): 2004-2012.doi: 10.12118/j.issn.1000-6060.2022.124

• 区域发展 • 上一篇    

兰州市主城区房价分异及驱动因素研究

晁勐(),张俊(),刘翔   

  1. 贵州大学矿业学院,贵州 贵阳 550025
  • 收稿日期:2022-03-28 修回日期:2022-08-26 出版日期:2022-11-25 发布日期:2023-02-01
  • 通讯作者: 张俊(1976-),男,博士,副教授,主要从事大地测量反演、地壳形变分析、GIS地理空间分析等方面的研究E-mail: jzhang13@gzu.edu.cn
  • 作者简介:晁勐(1996-),男,硕士研究生,主要从事城市地理等方面研究. E-mail: 1316480365@qq.com
  • 基金资助:
    国家自然科学基金项目(41701464);贵州省科技厅科技支撑计划项目(黔科合支撑[2022]一般204);贵州大学测绘科学与技术研究生创新实践基地建设项目(贵大研CXJD[2014]002);贵州大学培育项目(贵大培育[2019]26号)

Research on housing price differentiation and driving factors in central urban area of Lanzhou City

CHAO Meng(),ZHANG Jun(),LIU Xiang   

  1. College of Mining, Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2022-03-28 Revised:2022-08-26 Online:2022-11-25 Published:2023-02-01
  • Contact: Jun ZHANG

摘要:

以2021年兰州市主城区678个居住小区房价数据为基础,引入地理场模型量化影响房价的外部因素,通过空间自相关分析、多尺度地理加权回归等模型对房价分异的空间格局及驱动因素的作用机理、带宽差异展开研究,以期为推动河谷型城市房产市场的公平发展提供参考。结果表明:(1) 兰州市主城区平均房价为13739元·m-2,空间上呈现“一主三副”的带状多中心组团式分布格局,房价由多中心向四周递减,价格相似的小区在地理空间上邻近分布,具有“小集中、大分散”的局部空间特征。(2) 房价分异是多种驱动因素共同作用的结果,区位特征中的主商圈对房价的影响居于首位,建筑特征中的房龄、容积率和邻里特征中的中学数量、绿化率等对房价的影响较大,城市地理特征对房价具有显著影响,愈靠近黄河的小区、房价越高。(3) 各驱动因素的带宽差异明显,主商圈、医院等小尺度变量存在高度空间异质性,而容积率、黄河等全局变量基本不存在空间异质性。

关键词: 河谷型城市, 房价分异, 地理场模型, 多尺度地理加权回归, 兰州市主城区

Abstract:

Based on the price data from 678 residential communities in the central urban area of Lanzhou City, Gansu Province, China in 2021, a geographical field model was introduced to quantify the external factors affecting the housing price. Spatial autocorrelation analysis and multi-scale geographically weighted regression were used to study the spatial pattern of housing price differentiation, the action mechanism of driving factors, and bandwidth differences. This can provide a reference for promoting the fair development of the real estate market in a valley city. The results show that: (1) the average housing price in the central urban area of Lanzhou City is 13739 yuan·m−2, with a multi-center group distribution pattern of “one principal, three secondaries”, and the housing price decreases from the multi-center to the surrounding areas. Residential communities with similar prices are geographically close together, indicating local spatial characteristics of “small concentration and large dispersion”. (2) Housing price is the result of the combined action of various factors: locational variables such as central business district (CBD) have the highest impact on the housing price; structural variables such as building age and floor area ratio (FAR), and neighborhood variables such as middle schools and green rate have a greater impact on the housing price; urban geographical variables have a significant impact on the housing prices, and the closer the residential community is to the Yellow River, the higher the housing price. (3) There were significant differences in the bandwidth scales of different variables; small-scale variables such as CBD and hospitals have high spatial heterogeneity, whereas global variables such as FAR and the Yellow River have little spatial heterogeneity.

Key words: valley-city, housing price differentiation, geographic field model, multiscale geographic weighted regression, central urban area of Lanzhou City