| [1] |
Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3): 593-608.
doi: 10.1111/j.1469-8137.2010.03214.x
pmid: 20298486
|
| [2] |
张志明, 孙小妹, 包段红, 等. 祁连山北麓荒漠草原5种优势植物生物量与土壤养分特征[J]. 干旱区地理, 2024, 47(4): 662-671.
doi: 10.12118/j.issn.1000-6060.2023.272
|
|
[Zhang Zhiming, Sun Xiaomei, Bao Duanhong, et al. Biomass and soil nutrient characteristics of five dominant plant species in the desert grassland of the northern foothills of the Qilian Mountains[J]. Arid Land Geography, 2024, 47(4): 662-671. ]
doi: 10.12118/j.issn.1000-6060.2023.272
|
| [3] |
Luo W T, Dijkstra F A, Bai E, et al. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China[J]. Biogeochemistry, 2016, 127(1): 141-153.
|
| [4] |
Tao Y, Zhou X B, Zhang S H, et al. Soil nutrient stoichiometry on linear sand dunes from a temperate desert in Central Asia[J]. Catena, 2020, 195: 104847, doi: 10.1016/j.catena.2020.104847.
|
| [5] |
王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1): 260-268.
|
|
[Wang Yongzhuang, Chen Xin, Shi Yi. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260-268. ]
pmid: 23718018
|
| [6] |
Achat D L, Bakker M R, Augusto L, et al. Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: Effects of microbiological and physicochemical properties[J]. Biogeosciences, 2013, 10(2): 733-752.
|
| [7] |
冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, 23(2): 400-408.
|
|
[Feng Defeng, Bao Weikai. Review of the temporal and spatial patterns of soil C∶N∶P stoichiometry and its driving factors[J]. Chinese Journal of Applied & Environmental Biology, 2017, 23(2): 400-408. ]
|
| [8] |
Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139-151.
|
| [9] |
Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: Is there a “redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235-252.
|
| [10] |
Raiesi F. Soil properties and C dynamics in abandoned and cultivated farmlands in a semi-arid ecosystem: Land abandonment and C dynamics[J]. Plant and Soil, 2012, 351(1-2): 161-175.
|
| [11] |
何高迅, 王越, 彭淑娴, 等. 滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征[J]. 生态学报, 2020, 40(13): 4425-4435.
|
|
[He Gaoxun, Wang Yue, Peng Shuxian, et al. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(13): 4425-4435. ]
|
| [12] |
郭鑫, 魏天兴, 陈宇轩, 等. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征[J]. 干旱区地理, 2022, 45(6): 1899-1907.
doi: 10.12118/j.issn.1000-6060.2022.026
|
|
[Guo Xin, Wei Tianxing, Chen Yuxuan, et al. Characteristics of soil ecological stoichiometry in typical fallow-restored vegetation in the loess hilly areas[J]. Arid Land Geography, 2022, 45(6): 1899-1907. ]
doi: 10.12118/j.issn.1000-6060.2022.026
|
| [13] |
Rawat M, Arunachalam K, Arunachalam A, et al. Relative contribution of plant traits and soil properties to the functioning of a temperate forest ecosystem in the Indian Himalayas[J]. Catena, 2020, 194: 104671, doi: 10.1016/j.catena.2020.104671.
|
| [14] |
杨晓霞, 赵锦梅, 张雪, 等. 祁连山东段山地典型灌丛枯落物及土壤水源涵养功能研究[J]. 干旱区地理, 2022, 45(1): 197-207.
doi: 10.12118/j.issn.1000–6060.2021.166
|
|
[Yang Xiaoxia, Zhao Jinmei, Zhang Xue, et al. Litter and soil water conservation function of typical shrubs in eastern Qilian Mountains[J]. Arid Land Geography, 2022, 45(1): 197-207. ]
doi: 10.12118/j.issn.1000–6060.2021.166
|
| [15] |
Aponte C, García L V, Marañón T. Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time[J]. Ecosystems, 2012, 15(7): 1204-1218.
|
| [16] |
Chen M Y, Yang X, Shao M A, et al. Changes in soil C-N-P stoichiometry after 20 years of typical artificial vegetation restoration in semiarid continental climate zones[J]. Science of the Total Environment, 2022, 852: 158380, doi: 10.1016/j.scitotenv.2022.158380.
|
| [17] |
王燕, 张全智, 王传宽, 等. 恢复方式对东北东部森林土壤碳氮磷计量特征的影响[J]. 植物生态学报, 2024, 48(7): 943-954.
doi: 10.17521/cjpe.2023.0234
|
|
[Wang Yan, Zhang Quanzhi, Wang Chuankuan, et al. Effects of restoration approaches on forest soil carbon, nitrogen and phosphorus stoichiometry in eastern northeast China[J]. Chinese Journal of Plant Ecology, 2024, 48(7): 943-954. ]
doi: 10.17521/cjpe.2023.0234
|
| [18] |
姚彩萍, 陈银萍, 李玉强, 等. 北方林草交错带土壤生态化学计量特征及其影响因素[J]. 森林与环境学报, 2022, 42(3): 235-243.
|
|
[Yao Caiping, Chen Yinping, Li Yuqiang, et al. Soil ecological stoichiometry characteristics and influencing factors of a forest-grassland ecotone in northern China[J]. Journal of Forestry and Environment, 2022, 42(3): 235-243. ]
|
| [19] |
戴娜敏, 包亮. 1995年—2019年内蒙古清水河县土地利用空间格局变化分析[J]. 内蒙古科技与经济, 2021(13): 67-71.
|
|
[Dai Namin, Bao Liang. Change of land use spatial pattern in Qingshuihe County, Inner Mongolia from 1995 to 2019[J]. Inner Mongolia Science and Technology and Economy, 2021(13): 67-71. ]
|
| [20] |
Staszel-Szlachta K, Blonska E, Szlachta A, et al. C/N/P stoichiometry of forest soil in relation to the tree species and slope position in the Carpathian Mountains[J]. Sylwan, 2023, 167(7): 440-451.
|
| [21] |
白一茹, 张兴, 包维斌, 等. 黄土丘陵区不同土地利用方式土壤碳氮磷及其生态化学计量特征[J]. 干旱地区农业研究, 2019, 37(4): 117-123, 131.
|
|
[Bai Yiru, Zhang Xing, Bao Weibin, et al. The soil carbon, nitrogen, and phosphorus contents and their stoichiometry under different land uses in loess hilly region[J]. Agricultural Research in Arid Areas, 2019, 37(4): 117-123, 131. ]
|
| [22] |
孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020, 39(3): 766-774.
|
|
[Sun Qian, Wang Bing, Zhou Huaiping, et al. Spatial variation of ecological stoichiometry of soil C, N and P in a small catchment of loess hilly area[J]. Chinese Journal of Ecology, 2020, 39(3): 766-774. ]
|
| [23] |
Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151-163.
|
| [24] |
王嘉瑞, 周俊菊, 朱国锋. 中国土壤碳氮磷及生态化学计量研究综述[J]. 生态学杂志, 2024, 43(8): 2493-2501.
|
|
[Wang Jiarui, Zhou Junju, Zhu Guofeng. A review of soil carbon, nitrogen, phosphorus and stoichiometry studies in China[J]. Chinese Journal of Ecology, 2024, 43(8): 2493-2501. ]
doi: 10.13292/j.1000-4890.202408.011
|
| [25] |
Craine J M, Dybzinski R. Mechanisms of plant competition for nutrients, water and light[J]. Functional Ecology, 2013, 27(4): 833-840.
|
| [26] |
吴金凤, 刘鞠善, 李梓萌, 等. 草地土壤磷循环及其对全球变化的响应[J]. 中国草地学报, 2021, 43(6): 102-111.
|
|
[Wu Jinfeng, Liu Jushan, Li Zimeng, et al. Grassland soil phosphorus cycle and its response to global change[J]. Journal of Grassland Science, 2021, 43(6): 102-111. ]
|
| [27] |
贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657.
doi: 10.17521/cjpe.2019.0097
|
|
[Jia Bingrui. Litter decomposition and its underlying mechanisms[J]. Chinese Journal of Plant Ecology, 2019, 43(8): 648-657. ]
doi: 10.17521/cjpe.2019.0097
|
| [28] |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947.
|
|
[Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. ]
|
| [29] |
高君亮, 罗凤敏, 高永, 等. 农牧交错带不同土地利用类型土壤碳氮磷生态化学计量特征[J]. 生态学报, 2019, 39(15): 5594-5602.
|
|
[Gao Junliang, Luo Fengmin, Gao Yong, et al. Ecological soil C, N, and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of northern China[J]. Acta Ecologica Sinica, 2019, 39(15): 5594-5602. ]
|
| [30] |
Elser J J, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003, 6(10): 936-943.
|
| [31] |
Bui E N, Henderson B L. C∶N∶P stoichiometry in Australian soils with respect to vegetation and environmental factors[J]. Plant and Soil, 2013, 373(1-2): 553-568.
|
| [32] |
Tang Z Y, Xu W T, Zhou G Y, et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4033-4038.
|
| [33] |
Yimer F, Ledin S, Abdelkadir A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia[J]. Geoderma, 2006, 135: 335-344.
|
| [34] |
石亮, 王凯, 张日升, 等. 樟子松人工林间伐宽度对土壤养分的影响[J]. 生态学杂志, 2020, 39(10): 3203-3210.
|
|
[Shi Liang, Wang Kai, Zhang Risheng, et al. Effects of thinning width on soil nutrients in Pinus sylvestris var. mongolica plantations[J]. Chinese Journal of Ecology, 2020, 39(10): 3203-3210. ]
|
| [35] |
戚德辉, 温仲明, 王红霞, 等. 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应[J]. 生态学报, 2016, 36(20): 6420-6430.
|
|
[Qi Dehui, Wen Zhongming, Wang Hongxia, et al. Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their responses to micro-topographical variations in the hilly and gully region of the Loess Plateau, China[J]. Acta Ecologica Sinica, 2016, 36(20): 6420-6430. ]
|
| [36] |
刘顺, 许格希, 陈淼, 等. 坡向对川西亚高山土壤酶活性和微生物养分限制的影响[J]. 应用生态学报, 2023, 34(11): 2993-3002.
doi: 10.13287/j.1001-9332.202311.003
|
|
[Liu Shun, Xu Gexi, Chen Miao, et al. Effects of slope aspect on soil enzyme activity and microbial nutrient limitation in subalpine region of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2023, 34(11): 2993-3002. ]
doi: 10.13287/j.1001-9332.202311.003
|
| [37] |
Pan F J, Zhang W, Liang Y M, et al. Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation successions in karst ecosystem, southwestern China[J]. Environmental Science and Pollution Research, 2018, 25(17): 16979-16990.
|
| [38] |
王宏生, 王玉琴, 宋梅玲, 等. 黄帚橐吾不同密度斑块植物、土壤和微生物碳氮磷生态化学计量特征[J]. 生态学报, 2024, 44(10): 4297-4307.
|
|
[Wang Hongsheng, Wang Yuqin, Song Meiling, et al. Carbon, nitrogen and phosphorus stoichiometric characteristics of plants, soils and microbial biomass in patches with different densities of Ligularia virgaurea[J]. Acta Ecologica Sinica, 2024, 44(10): 4297-4307. ]
|