| [1] |
Geels F, Schot J. The dynamics of transitions: A socio-technical perspective[M]. New York: Routledge. 2010: 11-01.
|
| [2] |
Loorbach D, Rotmans J. The practice of transition management: Examples and lessons from four distinct cases[J]. Futures, 2010, 42(3): 237-246.
doi: 10.1016/j.futures.2009.11.009
|
| [3] |
Zhang H J, Zhao X L, Zhang R D. Synergistic development of heating system decarbonization transition and large-scale renewable energy penetration: A case study of Beijing[J]. Energy Conversion and Management, 2022, 269: 116142, doi: 10.1016/j.enconman.2022.116142.
|
| [4] |
Suomalainen K, Wen L, Sheng M Y S, et al. Climate change impact on the cost of decarbonisation in a hydro-based power system[J]. Energy, 2022, 246: 123369, doi: 10.1016/j.energy.2022.123369.
|
| [5] |
Nilsson L J, Bauer F, Ahman M, et al. An industrial policy framework for transforming energy and emissions intensive industries towards zero emissions[J]. Climate Policy, 2021, 21(8): 1053-1065.
doi: 10.1080/14693062.2021.1957665
|
| [6] |
Du K, Li J L. Towards a green world: How do green technology innovations affect total-factor carbon productivity[J]. Energy Policy, 2019, 131: 240-250.
doi: 10.1016/j.enpol.2019.04.033
|
| [7] |
Ausubel J H. Technical progress and climatic change[J]. Energy Policy, 1995, 23(4): 411-416.
doi: 10.1016/0301-4215(95)90166-5
|
| [8] |
Bataille C, Waisman H, Colombier M, et al. The need for national deep decarbonization pathways for effective climate policy[J]. Climate Policy, 2016, 16(Suppl. 1): 1-20.
doi: 10.1080/14693062.2014.965657
|
| [9] |
Holmes K J, Zeitler E, Kerxhalli-kleinfeld M, et al. Scaling deep decarbonization technologies[J]. Earth’s Future, 2021, 9(11): e2021EF002399, doi: 10.1029/2021EF002399.
|
| [10] |
吴茜, 陈强强. 甘肃省行业碳排放影响因素及脱钩努力研究[J]. 干旱区地理, 2023, 46(2): 274-283.
doi: 10.12118/j.issn.1000-6060.2022.126
|
|
[Wu Xi, Chen Qiangqiang. Influencing factors and decoupling efforts of industry-related carbon emissions in Gansu Province[J]. Arid Land Geography, 2023, 46(2): 274-283.]
doi: 10.12118/j.issn.1000-6060.2022.126
|
| [11] |
Burandt T, Xiong B, Löffler K, et al. Decarbonizing China’s energy system: Modeling the transformation of the electricity, transportation, heat, and industrial sectors[J]. Applied Energy, 2019, 255: 113820, doi: 10.1016/j.apenergy.2019.113820.
|
| [12] |
黄鲁成, 郭鑫, 苗红, 等. 面向碳中和的脱碳成本控制: 优化创新与政策[J]. 科学学研究, 2022, 40(12): 2187-2193.
|
|
[Huang Lucheng, Guo Xin, Miao Hong, et al. Decarbonization cost control for carbon neutrality: Optimizing technological innovation and policies[J]. Studies in Science of Science, 2022, 40(12): 2187-2193.]
|
| [13] |
魏一鸣, 韩融, 余碧莹, 等. 全球能源系统转型趋势与低碳转型路径——来自于IPCC第六次评估报告的证据[J]. 北京理工大学学报(社会科学版), 2022, 24(4): 163-188.
|
|
[Wei Yiming, Han Rong, Yu Biying, et al. Global energy systems transition trend and low-carbon transformation pathways: Evidences from the IPCC AR6[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(4): 163-188.]
|
| [14] |
江深哲, 杜浩锋, 徐铭梽. “双碳”目标下能源与产业双重结构转型[J]. 数量经济技术经济研究, 2024, 41(2): 109-130.
|
|
[Jiang Shenzhe, Du Haofeng, Xu Mingzhi. Dual transition of energy and industrial structure under the carbon peaking and neutrality goals[J]. Journal of Quantitative & Technological Economics, 2024, 41(2): 109-130.]
|
| [15] |
薛飞, 周民良, 刘家旗. 产业转型升级能否降低碳排放?——来自国家产业转型升级示范区的证据[J]. 产业经济研究, 2023(2): 1-13.
|
|
[Xue Fei, Zhou Minliang, Liu Jiaqi. Can industrial transformation and upgrading reduce carbon emissions? Evidence from national industrial transformation and upgrading demonstration zones[J]. Industrial Economics Research, 2023(2): 1-13.]
|
| [16] |
Kirchner M, Schmidt J, Wehrle S. Exploiting synergy of carbon pricing and other policy instruments for deep decarbonization[J]. Joule, 2019, 3(4): 891-893.
doi: 10.1016/j.joule.2019.03.006
|
| [17] |
徐维祥, 郑金辉, 周建平, 等. 资源型城市转型绩效特征及其碳减排效应[J]. 自然资源学报, 2023, 38(1): 39-57.
doi: 10.31497/zrzyxb.20230103
|
|
[Xu Weixiang, Zheng Jinhui, Zhou Jianping, et al. Transformation performance characteristics of resource-based cities and their carbon emission reduction effects[J]. Journal of Natural Resources, 2023, 38(1): 39-57.]
doi: 10.31497/zrzyxb.20230103
|
| [18] |
张文忠, 余建辉. 中国资源型城市转型发展的政策演变与效果分析[J]. 自然资源学报, 2023, 38(1): 22-38.
doi: 10.31497/zrzyxb.20230102
|
|
[Zhang Wenzhong, Yu Jianhui. Policy evolution and transformation effect analysis of sustainable development of resource-based cities in China[J]. Journal of Natural Resources, 2023, 38(1): 22-38.]
doi: 10.31497/zrzyxb.20230102
|
| [19] |
刘小玲, 唐卓伟, 孙晓华, 等. 要素错配:解开资源型城市转型困境之谜[J]. 中国人口·资源与环境, 2022, 32(10): 88-102.
|
|
[Liu Xiaoling, Tang Zhuowei, Sun Xiaohua, et al. Factors mismatch: Solving the mystery of transformation dilemma faced by resource-based cities[J]. China Population, Resources and Environment, 2022, 32(10): 88-102.]
|
| [20] |
席振鑫, 马丽, 金凤君, 等. 黄河流域典型资源型城市工业转型的时空特征、类型与路径[J]. 资源科学, 2023, 45(10): 1977-1991.
doi: 10.18402/resci.2023.10.05
|
|
[Xi Zhenxin, Ma Li, Jin Fengjun, et al. Spatiotemporal characteristics, types, and paths of industrial transformation in typical resource-based cities in the Yellow River Basin[J]. Resources Science, 2023, 45(10): 1977-1991.]
doi: 10.18402/resci.2023.10.05
|
| [21] |
徐英启, 程钰, 王晶晶. 中国资源型城市碳排放效率时空演变与绿色技术创新影响[J]. 地理研究, 2023, 42(3): 878-894.
doi: 10.11821/dlyj020220256
|
|
[Xu Yingqi, Cheng Yu, Wang Jingjing. The impact of green technological innovation on the spatiotemporal evolution of carbon emission efficiency of resource-based cities in China[J]. Geographical Research, 2023, 42(3): 878-894.]
|
| [22] |
穆佳音, 王金满, 刘彪, 等. 资源型城市碳排放演变及影响因素研究进展[J]. 煤炭学报, 2024, 49(增刊2): 1130-1142.
|
|
[Mu Jiayin, Wang Jinman, Liu Biao, et al. Research progress on the evolution and influencing factors of carbon emissions in resource-based cities[J]. Journal of China Coal Society, 2024, 49(Suppl. 2): 1130-1142.]
|
| [23] |
刘晓燕, 孙慧. 资源型产业碳排放驱动因素演化与低碳发展路径选择[J]. 统计与决策, 2019, 35(2): 53-57.
|
|
[Liu Xiaoyan, Sun Hui. Evolution of carbon emission driving factors of resource-based industries and selection of low-carbon development paths[J]. Statistics & Decision, 2019, 35(2): 53-57.]
|
| [24] |
张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022, 38(1): 35-66.
|
|
[Zhang Xiliang, Huang Xiaodan, Zhang Da, et al. Research on the pathway and policies for China’s energy and economy transformation toward carbon neutrality[J]. Journal of Management World, 2022, 38(1): 35-66.]
|
| [25] |
方文君, 邓峰, 张战仁, 等. 环境目标约束对能源结构低碳转型的影响[J]. 中国人口·资源与环境, 2024, 34(1): 84-96.
|
|
[Fang Wenjun, Dengfeng, Zhang Zhanren, et al. Impact of environmental target constraints on the low-carbon transformation of China’s energy structure[J]. China Population, Resources and Environment, 2024, 34(1): 84-96.]
|
| [26] |
高瑜, 李响, 李俊青. 金融科技与技术创新路径——基于绿色转型的视角[J]. 中国工业经济, 2024(2): 80-98.
|
|
[Gao Yu, Li Xiang, Li Junqing. Fintech and the path of technological innovation: From the perspective of green transformation[J]. China Industrial Economics, 2024(2): 80-98.]
|
| [27] |
Ai H S, Tan X Q, Zhou S W, et al. The impact of supportive policy for resource-exhausted cities on carbon emission: Evidence from China[J]. Resources Policy, 2023, 85: 103951, doi: 10.1016/j.resourpol.2023.103951.
|
| [28] |
史丹, 李少林. 排污权交易制度与能源利用效率——对地级及以上城市的测度与实证[J]. 中国工业经济, 2020(9): 5-23.
|
|
[Shi Dan, Li Shaolin. Emissions trading system and energy use efficiency: Measurements and empirical evidence for cities at and above the prefecture level[J]. China Industrial Economics, 2020(9): 5-23.]
|
| [29] |
干春晖, 郑若谷, 余典范. 中国产业结构变迁对经济增长和波动的影响[J]. 经济研究, 2011, 46(5): 4-16, 31.
|
|
[Gan Chunhui, Zheng Ruogu, Yu Dianfan. An empirical study on the effects of industrial structure on economic growth and fluctuations in China[J]. Economic Research Journal, 2011, 46(5): 4-16, 31.]
|
| [30] |
丛建辉, 刘学敏, 赵雪如. 城市碳排放核算的边界界定及其测度方法[J]. 中国人口·资源与环境, 2014, 24(4): 19-26.
|
|
[Cong Jianhui, Liu Xuemin, Zhao Xueru. Demarcation problems and the corresponding measurement methods of the urban carbon accounting[J]. China Population, Resources and Environment, 2014, 24(4): 19-26.]
|
| [31] |
Liu X L, Vu D, Perera S C, et al. Nexus between water-energy-carbon footprint network: Multiregional input-output and coupling coordination degree analysis[J]. Journal of Cleaner Production, 2023, 430: 139639, doi: 10.1016/j.jclepro.2023.139639.
|
| [32] |
周小亮, 吴武林. 中国包容性绿色增长的测度及分析[J]. 数量经济技术经济研究, 2018, 35(8): 3-20.
|
|
[Zhou Xiaoliang, Wu Wulin. The measurement and analysis of the inclusive green growth in China[J]. Journal of Quantitative & Technological Economics, 2018, 35(8): 3-20.]
|
| [33] |
Bryan J D, Zuva T. A review on TAM and TOE framework progression and how these models integrate[J]. Advances in Science, Technology and Engineering Systems Journal, 2021, 6(3): 137-145.
|
| [34] |
杜运周, 刘秋辰, 陈凯薇, 等. 营商环境生态、全要素生产率与城市高质量发展的多元模式——基于复杂系统观的组态分析[J]. 管理世界, 2022, 38(9): 127-145.
|
|
[Du Yunzhou, Liu Qiuchen, Chen Kaiwei, et al. Ecosystem of doing business, total factor productivity and multiple patterns of high-quality development of Chinese cities: A configuration analysis based on complex systems view[J]. Journal of Management World, 2022, 38(9): 127-145.]
|
| [35] |
陶克涛, 张术丹, 赵云辉. 什么决定了政府公共卫生治理绩效?——基于QCA方法的联动效应研究[J]. 管理世界, 2021, 37(5): 128-138, 156, 10.
|
|
[Tao Ketao, Zhang Shudan, Zhao Yunhui. What does determine performance of government public health governance? A study on co-movement effect based on QCA[J]. Journal of Management World, 2021, 37(5): 128-138, 156, 10.]
|
| [36] |
夏文浩, 霍瑜, 逯渊, 等. 新疆农业碳排放的时空差异与空间溢出效应分析[J]. 干旱区地理, 2024, 47(6): 1084-1096.
doi: 10.12118/j.issn.1000-6060.2023.344
|
|
[Xia Wenhao, Huo Yu, Lu Yuan, et al. Spatialtemporal differences and spatial spillover effects of agricultural carbon emissions in Xinjiang[J]. Arid Land Geography, 2024, 47(6): 1084-1096.]
doi: 10.12118/j.issn.1000-6060.2023.344
|