干旱区地理 ›› 2022, Vol. 45 ›› Issue (1): 197-207.doi: 10.12118/j.issn.1000–6060.2021.166
收稿日期:
2021-04-14
修回日期:
2021-06-09
出版日期:
2022-01-25
发布日期:
2022-01-21
通讯作者:
赵锦梅
作者简介:
杨晓霞(1995-),女,硕士研究生,主要从事水土保持与荒漠化防治方面的研究. E-mail: 基金资助:
YANG Xiaoxia(),ZHAO Jinmei(),ZHANG Xue,FAN Yuhang,ZHANG Bin,WANG Jingnan,ZHANG Biyan
Received:
2021-04-14
Revised:
2021-06-09
Online:
2022-01-25
Published:
2022-01-21
Contact:
Jinmei ZHAO
摘要:
为探讨高寒地区灌丛枯落物层及土壤层的水源涵养功能,以祁连山东段6种典型灌丛的枯落物和土壤为研究对象,采用野外调查与室内浸泡相结合的方法,对枯落物及土壤水文特征进行了研究。结果表明:(1) 6种灌丛枯落物的蓄积量范围为0.23~3.61 t·hm-2,大小排序为山生柳>硬叶柳>绣线菊>金露梅>头花杜鹃>千里香杜鹃。(2) 枯落物最大持水量范围为0.57~10.59 t·hm-2,山生柳最大,千里香杜鹃最小;最大持水率变化范围为147.30%~293.28%,山生柳最大,绣线菊最小。(3) 6种灌丛枯落物的持水量(Y)与浸泡时间(t)符合对数函数关系:Y=klnt+b,R2>0.967;吸水速率(V)与浸泡时间(t)符合幂函数关系:V=Ktn,R2>0.823。(4) 最大拦蓄量和有效拦蓄量均为山生柳>硬叶柳>金露梅>绣线菊>千里香杜鹃>头花杜鹃。(5) 6种灌丛土壤容重范围为0.69~0.95 g·cm-3,山生柳最大,千里香杜鹃最小;土壤总孔隙度范围为60.94%~68.75%,千里香杜鹃最大,绣线菊最小;土壤最大持水量范围为609.44~687.46 t·hm-2,千里香杜鹃最大,绣线菊最小。(6) 根据坐标综合评定法分析得出,山生柳灌丛的水源涵养功能最优。
杨晓霞,赵锦梅,张雪,樊宇航,张斌,王婧楠,张碧艳. 祁连山东段山地典型灌丛枯落物及土壤水源涵养功能研究[J]. 干旱区地理, 2022, 45(1): 197-207.
YANG Xiaoxia,ZHAO Jinmei,ZHANG Xue,FAN Yuhang,ZHANG Bin,WANG Jingnan,ZHANG Biyan. Litter and soil water conservation function of typical shrubs in eastern Qilian Mountains[J]. Arid Land Geography, 2022, 45(1): 197-207.
表1
样地基本概况"
灌丛类型 | 经度/E | 纬度/N | 坡向 | 海拔/m | 坡度/(°) | 平均冠幅/cm | 平均树高/cm | 平均基径/mm | 平均株数/株 | 枯落物厚度/cm |
---|---|---|---|---|---|---|---|---|---|---|
山生柳 | 102°57′ | 37°25′ | 阳坡 | 3237.70~3241.36 | 6 | 172.81 | 127.91 | 12.02 | 57 | 3.33 |
硬叶柳 | 102°57′ | 37°25′ | 阳坡 | 3237.70~3241.36 | 6 | 119.17 | 86.20 | 7.65 | 60 | 2.00 |
绣线菊 | 102°57′ | 37°25′ | 阳坡 | 3237.70~3241.36 | 6 | 69.38 | 69.31 | 6.06 | 21 | 0.70 |
头花杜鹃 | 102°56′ | 37°24′ | 阴坡 | 3231.21~3232.61 | 16 | 61.94 | 60.62 | 5.94 | 46 | 0.75 |
千里香杜鹃 | 102°56′ | 37°24′ | 阴坡 | 3231.21~3232.61 | 16 | 55.00 | 56.33 | 5.66 | 47 | 0.40 |
金露梅 | 102°57′ | 37°25′ | 阴坡 | 3231.21~3232.61 | 16 | 83.90 | 63.00 | 4.32 | 43 | 1.10 |
表2
枯落物持水量、吸水速率与浸水时间的回归拟合方程"
灌丛类型 | 持水量与浸水时间 | 吸水速率与浸水时间 | |||
---|---|---|---|---|---|
拟合方程 | 决定系数(R2) | 拟合方程 | 决定系数(R2) | ||
山生柳 | Y=371.603lnt+1894.645 | 0.971** | V=880.144t-1.437 | 0.920** | |
硬叶柳 | Y=358.237lnt+1813.809 | 0.980** | V=815.394t-1.393 | 0.977** | |
绣线菊 | Y=252.702lnt+1433.572 | 0.976** | V=609.293t-1.485 | 0.956** | |
头花杜鹃 | Y=396.161lnt+966.609 | 0.967** | V=520.498t-0.997 | 0.853** | |
千里香杜鹃 | Y=354.133lnt+1438.919 | 0.981** | V=585.315t-1.270 | 0.823** | |
金露梅 | Y=374.327lnt+1532.965 | 0.982** | V=687.293t-1.257 | 0.906** |
表3
灌丛土壤物理性质和水文特征"
灌丛 类型 | 土层深度 /cm | 容重 /g·cm-3 | 非毛管孔隙 /% | 毛管孔隙 /% | 总孔隙 /% | 最大持水量 /t·hm-2 | 毛管持水量 /t·hm-2 | 最小持水量 /t·hm-2 |
---|---|---|---|---|---|---|---|---|
山生柳 | 0~10 | 0.78±0.06Ca | 6.34±0.90Aab | 64.30±3.12Ab | 70.64±3.65Ab | 706.40±36.48Ab | 642.96±31.18Ab | 63.43±9.02Aab |
10~20 | 0.81±0.07Ca | 4.29±1.46Bab | 63.47±2.19Abcd | 67.76±3.33Ab | 677.57±33.33Ab | 634.70±21.93Abcd | 42.87±14.64Bab | |
20~40 | 1.17±0.04Aa | 2.63±0.33Bb | 50.93±1.24Bb | 53.56±1.46Bb | 535.55±14.58Bb | 509.29±12.39Bb | 26.27±3.30Bb | |
40~60 | 1.03±0.00Bab | 3.55±0.68Bb | 53.61±0.26Bab | 57.16±0.94Ba | 571.63±9.40Ba | 536.13±2.60Bab | 35.50±6.80Bb | |
均值 | 0.95±0.03a | 4.20±0.16a | 58.08±0.17b | 62.28±0.21b | 622.79±2.09b | 580.77±1.68b | 42.02±1.65a | |
硬叶柳 | 0~10 | 0.79±0.02Da | 5.65±1.95Aab | 64.64±0.18Ab | 70.28±1.92Ab | 702.82±19.17Ab | 646.35±1.76Ab | 56.47±19.53Aab |
10~20 | 0.87±0.04Ca | 6.06±1.70Aab | 59.04±2.01Bd | 65.10±1.65Bbc | 651.05±16.52Bbc | 590.41±20.10Bd | 60.63±17.02Aab | |
20~40 | 1.10±0.06Ab | 3.73±0.73Aa | 51.39±2.33Cb | 55.12±1.64Cb | 551.16±16.41Db | 513.90±23.26Cb | 37.27±7.34Aa | |
40~60 | 0.99±0.02Bbc | 5.39±1.65Aab | 53.45±0.79Cab | 58.84±2.44Ca | 588.42±24.42Ca | 534.52±7.92Cab | 53.90±16.50Aab | |
均值 | 0.94±0.02a | 5.21±1.10a | 57.13±1.20b | 62.34±1.31b | 623.36±13.07b | 571.30±12.00b | 52.07±10.99a | |
绣线菊 | 0~10 | 0.78±0.15Ca | 5.90±2.42Aab | 65.90±2.53Ab | 71.80±4.30Ab | 718.00±43.02Ab | 658.97±25.31Ab | 59.03±24.23Aab |
10~20 | 0.86±0.06BCa | 3.21±0.32Bb | 60.50±0.50Bcd | 63.71±0.56Bc | 637.14±5.63Bc | 605.04±5.02Bcd | 32.10±3.21Bb | |
20~40 | 1.07±0.01Ab | 3.11±0.27Bab | 49.63±0.47Cb | 52.74±0.20Cb | 527.39±2.00Cb | 496.34±4.75Cb | 31.05±2.75Bab | |
40~60 | 0.96±0.00ABc | 7.53±0.13Aa | 47.99±1.19Cc | 55.52±1.32Ca | 555.21±13.23Ca | 479.91±11.93Cc | 75.30±1.30Aa | |
均值 | 0.92±0.05a | 4.94±0.46a | 56.01±0.50b | 60.94±0.78b | 609.44±7.81b | 560.07±5.02b | 49.37±4.63a | |
头花 杜鹃 | 0~10 | 0.48±0.03Db | 5.81±0.23ABab | 73.11±0.79Aa | 78.92±1.02Aa | 789.16±10.20Aa | 731.06±7.90Aa | 58.10±2.30ABab |
10~20 | 0.65±0.09Cb | 4.78±0.79ABab | 68.32±2.50Aab | 73.10±1.71Aa | 731.05±17.14Aa | 683.25±25.02Aab | 47.80±7.90ABab | |
20~40 | 0.84±0.02Bd | 3.47±0.07Bab | 61.31±5.13a | 64.77±5.07Ba | 647.72±50.68Ba | 613.07±51.33Ba | 34.65±0.65Bab | |
40~60 | 1.05±0.05Aa | 6.74±2.46Aa | 50.89±3.02Cb | 57.64±5.48Ba | 576.38±54.84Ba | 508.93±30.19Cb | 67.45±24.65Aa | |
均值 | 0.76±0.00c | 5.20±0.89a | 63.41±0.96a | 68.61±0.07a | 686.08±0.69a | 634.08±9.56a | 52.00±8.87a | |
千里香杜鹃 | 0~10 | 0.53±0.02Cb | 7.51±1.06Aa | 66.53±2.58Bb | 74.03±1.52Aab | 740.31±15.19Aab | 665.26±25.84Bb | 75.05±10.65Aa |
10~20 | 0.54±0.06Cb | 5.04±0.12Bab | 70.76±1.95Aa | 75.80±2.07Aa | 757.98±20.70Aa | 707.63±19.55Aa | 50.35±1.15Bab | |
20~40 | 0.72±0.01Be | 3.35±0.25Cab | 65.19±1.82Ba | 68.53±2.07Ba | 685.32±20.66Ba | 651.87±18.21Ba | 33.45±2.45Cab | |
40~60 | 0.98±0.01Ac | 3.05±0.55Cb | 53.57±1.12Cab | 56.62±0.58Ca | 566.23±5.75Ca | 535.68±11.20Cab | 30.55±5.45Cb | |
均值 | 0.69±0.02d | 4.74±0.49a | 64.01±0.02a | 68.75±0.51a | 687.46±5.10a | 640.11±0.21a | 47.35±4.93a | |
金露梅 | 0~10 | 0.68±0.04Ca | 4.22±0.15Bb | 68.75±2.93Ab | 72.97±3.08Ab | 729.68±30.80Ab | 687.53±29.35Ab | 42.15±1.45Bb |
10~20 | 0.79±0.09Ba | 7.11±2.80Aa | 65.39±5.18Abc | 72.49±2.37Aa | 724.93±23.73Aa | 653.88±51.78Abc | 71.05±28.05Aa | |
20~40 | 0.95±0.04Ac | 2.94±0.81Bab | 61.28±5.28ABa | 64.23±4.46Ba | 642.29±44.64Ba | 612.84±52.79ABa | 29.45±8.15Bab | |
40~60 | 1.03±0.01Aab | 3.08±0.26Bb | 53.88±0.18Ba | 56.96±0.44Ca | 569.60±4.44Ca | 538.80±1.84Ba | 30.80±2.60Bb | |
均值 | 0.86±0.01b | 4.34±0.93a | 62.33±3.30a | 66.66±2.37a | 666.62±23.68a | 623.26±33.02a | 43.36±9.34a |
表4
灌丛水源涵养功能指标及排序"
灌丛类型 | 枯落物厚度 | 枯落物蓄积量 | 枯落物最大持水量 | 枯落物有效拦蓄量 | 土壤蓄水能力 | 综合能力 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P12 | 序次 | P22 | 序次 | P32 | 序次 | P42 | 序次 | P52 | 序次 | ∑Pi 2 | 序次 | ||||||
山生柳 | 0.0000 | 1 | 0.0000 | 1 | 0.0000 | 1 | 0.0000 | 1 | 0.0376 | 6 | 0.0376 | 1 | |||||
硬叶柳 | 0.1595 | 2 | 0.1796 | 2 | 0.1987 | 2 | 0.2007 | 2 | 0.0000 | 1 | 0.7385 | 2 | |||||
绣线菊 | 0.6238 | 5 | 0.5930 | 3 | 0.6952 | 4 | 0.6154 | 4 | 0.0027 | 3 | 2.5302 | 4 | |||||
头花杜鹃 | 0.6003 | 4 | 0.8105 | 5 | 0.8529 | 5 | 0.9478 | 6 | 0.000003 | 2 | 3.2114 | 5 | |||||
千里香杜鹃 | 0.7742 | 6 | 0.8766 | 6 | 0.8952 | 6 | 0.9041 | 5 | 0.0081 | 4 | 3.4583 | 6 | |||||
金露梅 | 0.4485 | 3 | 0.6320 | 4 | 0.6641 | 3 | 0.5746 | 3 | 0.0279 | 5 | 2.3471 | 3 |
[1] | 杨益帆, 胡宗达, 李亚非, 等. 川西亚高山川滇高山栎灌丛地被物与土壤持水性能[J]. 应用与环境生物学报, 2020, 26(4):951-960. |
[Yang Yifan, Hu Zongda, Li Yafei, et al. Water conservation capacity of ground cover and soils in the subalpine Quercus aquifolioides shrubs of western Sichuan, China[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(4):951-960. ] | |
[2] | 王晓学, 沈会涛, 李叙勇, 等. 森林水源涵养功能的多尺度内涵、过程及计量方法[J]. 生态学报, 2013, 33(4):1019-1030. |
[Wang Xiaoxue, Shen Huitao, Li Xuyong, et al. Concepts, processes and quantification methods of the forest water conservation at the multiple scales[J]. Acta Ecologica Sinica, 2013, 33(4):1019-1030. ] | |
[3] | 王玲, 赵广亮, 周红娟, 等. 八达岭林场不同密度油松人工林枯落物水文效应[J]. 生态环境学报, 2019, 28(9):1767-1775. |
[Wang Ling, Zhao Guangliang, Zhou Hongjuan, et al. Hydrological characteristics of litter in a Pinus tabulaeformis plantation with different densities in Badaling Forest Farm[J]. Ecology and Environmental Sciences, 2019, 28(9):1767-1775. ] | |
[4] |
Neris J, Tejedor M, Rodríguez M, et al. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife (Canary Islands, Spain)[J]. Catena, 2013, 108:50-57.
doi: 10.1016/j.catena.2012.04.011 |
[5] | 陈波, 杨新兵, 赵心苗, 等. 冀北山地6种天然纯林枯落物及土壤水文效应[J]. 水土保持学报, 2012, 26(2):196-202. |
[Chen Bo, Yang Xinbing, Zhao Xinmiao, et al. Hydrological effects of six natural pure forests litters and soil in northern mountain of Hebei Province[J]. Journal of Soil and Water Conservation, 2012, 26(2):196-202. ] | |
[6] | 魏强, 凌雷, 张广忠, 等. 甘肃兴隆山主要森林类型凋落物累积量及持水特性[J]. 应用生态学报, 2011, 22(10):2589-2598. |
[Wei Qiang, Ling Lei, Zhang Guangzhong, et al. Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, northwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(10):2589-2598. ] | |
[7] | 李强, 周道玮, 陈笑莹. 地上枯落物的累积、分解及其在陆地生态系统中的作用[J]. 生态学报, 2014, 34(14):3807-3819. |
[Li Qiang, Zhou Daowei, Chen Xiaoying. The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem[J]. Acta Ecologica Sinica, 2014, 34(14):3807-3819. ] | |
[8] | 赵鹏, 马佳明, 李艳茹, 等. 太行山典型区域不同林分类型枯落物水文效应[J]. 水土保持学报, 2020, 34(5):176-185. |
[Zhao Peng, Ma Jiaming, Li Yanru, et al. Hydrological effects of litters in different forest types in the typical areas of Taihang Mountains[J]. Journal of Soil and Water Conservation, 2020, 34(5):176-185. ] | |
[9] |
Gabarrón-Galeote M A, Martínez-Murillo J F, Ruiz-Sinoga J D, et al. Relevant effects of vegetal cover and litter on the soil hydrological response of two contrasting Mediterranean hillslopes at the end of the dry season (south of Spain)[J]. Hydrological Processes, 2012, 26(11):1729-1738.
doi: 10.1002/hyp.v26.11 |
[10] |
Ent R J V D, Coenders-Gerrits A M J, Nikoli R, et al. The importance of proper hydrology in the forest cover-water yield debate: Commentary on Ellison et al. (2012) Global Change Biology, 18, 806-820[J]. Global Change Biology, 2012, 18(9):2677-2680.
doi: 10.1111/j.1365-2486.2012.02703.x |
[11] |
Christopher, Burrows R, Martin, et al. Hydrology of the forest city basin, mid-continent, USA: Implications for CO2 sequestration in the St. Peter Sandstone[J]. Environmental Earth Sciences, 2015, 73(4):1409-1425.
doi: 10.1007/s12665-014-3494-0 |
[12] | 燕东. 海南尖峰岭热带雨林凋落物和土壤水文特性研究[D]. 北京: 中国林业科学研究院, 2011. |
[Yan Dong. Study on hydrological characteristics of litter and soil in tropical rainforest in Jianfengling, Hainan Island[D]. Beijing: Chinese Academy of Forestry, 2011. ] | |
[13] | 刘佳茹, 赵军, 沈思民, 等. 基于SRP概念模型的祁连山地区生态脆弱性评价[J]. 干旱区地理, 2020, 43(6):1573-1582. |
[Liu Jiaru, Zhao jun, Shen Simin, et al. Ecological vulnerability assessment of Qilian Mountains region based on SRP conceptual model[J]. Arid Land Geography, 2020, 43(6):1573-1582. ] | |
[14] | 袁杰, 曹广超, 曹生奎, 等. 祁连山南坡不同植被类型枯落物及其土壤持水特性分析[J]. 生态科学, 2018, 37(5):180-190. |
[Yuan Jie, Cao Guangchao, Cao Shengkui, et al. Analysis on litterfall and soil water retention properties of different vegetation types on the south slope of Qilian Mountains[J]. Ecological Science, 2018, 37(5):180-190. ] | |
[15] | 赵维俊. 祁连山水源涵养林水文特征研究[D]. 兰州: 甘肃农业大学, 2008. |
[Zhao Weijun. >Study on the hydrological characteristics of water conservation forest in Qilian Mountains[D]. Lanzhou: Gansu Agricultural University, 2008. ] | |
[16] | 田风霞, 赵传燕, 冯兆东, 等. 祁连山青海云杉林冠生态水文效应及其影响因素[J]. 生态学报, 2012, 32(4):62-72. |
[Tian Fengxia, Zhao Chuanyan, Feng Zhaodong, et al. Eco-hydrological effects of Qinghai spruce (Picea crassifolia) canopy and its influence factors in the Qilian Mountains[J]. Acta Ecologica Sinica, 2012, 32(4):62-72. ] | |
[17] | 张学龙, 金铭, 刘贤德, 等. 祁连山5种典型灌木林枯落物蓄积量及其持水特性[J]. 生态环境学报, 2015, 24(5):735-740. |
[Zhang Xuelong, Jin Ming, Liu Xiande, et al. Litter storage and its water holding capacity characteristics of five typical shrubs in Qilian Mountains[J]. Ecology and Environmental Sciences, 2015, 24(5):735-740. ] | |
[18] | 常宗强, 王金叶, 常学向, 等. 祁连山水源涵养林枯枝落叶层水文生态功能[J]. 西北林学院学报, 2001(增刊1):8-13. |
[Chang Zongqiang, Wang Jinye, Chang Xuexiang, et al. Litter hydrology and ecological functions of water resource conservation forest in Qilian Mountains[J]. Journal of Northwest Forestry University, 2001(Suppl. 1):8-13. ] | |
[19] | 聂雪花, 车克钧, 刘贤德, 等. 祁连山西水林区主要森林类型土壤水文功能研究[J]. 安徽农业科学, 2009, 37(15):7269-7272. |
[Nie Xuehua, Che Kejun, Liu Xiande, et al. Study on the main forest type soil hydrological function in Xishui forest region of Qilian Mountain[J]. Journal of Anhui Agricultural Sciences, 2009, 37(15):7269-7272. ] | |
[20] | 赵锦梅, 王彦辉, 王紫, 等. 祁连山东段金强河河谷高寒草地土壤的水文特征[J]. 草业科学, 2020, 37(2):256-265. |
[Zhao Jinmei, Wang Yanhui, Wang Zi, et al. Soil hydrological characteristics of alpine grasslands in the Jinqiang River Valley in eastern Qilian Mountains[J]. Pratacultural Science, 2020, 37(2):256-265. ] | |
[21] | 王金叶. 祁连山水源涵养林生态系统水分传输过程与机理研究[D]. 长沙: 中南林业科技大学, 2006. |
[Wang Jinye. Study of mechanism and process of water transmission on water resoure conservation forests eeosystem in Qilian Mountains[D]. Changsha: Central South University of Forestry and Technology, 2006. ] | |
[22] | 孟好军, 刘贤德, 张宏斌, 等. 祁连山人工林凋落物和土壤水分特性的研究[J]. 中南林业科技大学学报, 2013, 33(2):11-15. |
[Meng Haojun, Liu Xiande, Zhang Hongbin, et al. Study on litters and soil moisture characteristics of different plantations in Qilian Mountains[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2):11-15. ] | |
[23] | 马剑, 刘贤德, 李广, 等. 祁连山北麓中段青海云杉林土壤水热时空变化特征[J]. 干旱区地理, 2020, 43(4):1033-1040. |
[Ma Jian, Liu Xiande, Li Guang, et al. Spatial and temporal variations of soil moisture and temperature of Picea crassifolia forest in north piedmont of central Qilian Mountains[J]. Arid Land Geography, 2020, 43(4):1033-1040. ] | |
[24] | 王学福. 灌木林在祁连山区的作用及其发展策略研究[J]. 甘肃林业科技, 2005, 30(2):32-35, 57. |
[Wang Xuefu. The importance of shrub in Qilian Mountain and its protection and development countermeasures[J]. Journal of Gansu Forestry Science and Technology, 2005, 30(2):32-35, 57. ] | |
[25] | 陈引珍, 程金花, 张洪江, 等. 缙云山几种林分水源涵养和保土功能评价[J]. 水土保持学报, 2009, 23(2):66-70. |
[Chen Yinzhen, Cheng Jinhua, Zhang Hongjiang, et al. Evaluation of soil and water conservation capacity of several forest in Jinyun Mountain[J]. Journal of Soil and Water Conservation, 2009, 23(2):66-70. ] | |
[26] | 牛勇, 刘洪禄, 张志强. 北京地区典型树种及非生物因子对枯落物水文效应的影响[J]. 农业工程学报, 2015, 31(8):183-189. |
[Niu Yong, Liu Honglu, Zhang Zhiqiang. Effects of typical tree species and abiotic factors on hydrologic characters of forest litter in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8):183-189. ] | |
[27] | 赵锦梅, 徐长林, 马亚萍, 等. 祁连山东段高寒灌丛地被物与土壤的水文特征[J]. 林业科学, 2014, 50(10):146-151. |
[Zhao Jinmei, Xu Changlin, Ma Yaping, et al. Surface cover and soil hydrological characteristics of alpine shrub in eastern Qilian Mountains[J]. Scientia Silvae Sinicae, 2014, 50(10):146-151. ] | |
[28] | 齐瑞, 杨永红, 陈宁, 等. 白龙江上游5种典型灌木林枯落物蓄积量及持水特性[J]. 水土保持学报, 2016, 30(6):123-127. |
[Qi Rui, Yang Yonghong, Chen Ning, et al. Litter storage and water holding capacity characteristics of five typical shrubberies in the upper reaches of Bailongjiang River of Gansu Province[J]. Journal of Soil and Water Conservation, 2016, 30(6):123-127. ] | |
[29] | 林立文, 邓羽松, 李佩琦, 等. 桂北地区不同密度杉木林枯落物与土壤水文效应[J]. 水土保持学报, 2020, 34(5):200-207, 215. |
[Lin Liwen, Deng Yusong, Li Peiqi, et al. Study on the effects of litter and soil hydrology of different density Cunninghamia lanceolata forests in northern Guangxi[J]. Journal of Soil and Water Conservation, 2020, 34(5):200-207, 215. ] | |
[30] | 李晶晶, 白岗栓, 张蕊. 陕北丘陵沟壑区常见树种叶片的吸水性能[J]. 中国水土保持科学, 2013, 11(1):99-102. |
[Li Jingjing, Bai Gangshuan, Zhang Rui. Water absorption of common trees leaves in loess hilly and gully region of northern Shaanxi[J]. Science of Soil and Water Conservation, 2013, 11(1):99-102. ] | |
[31] | 吴晓光, 刘龙, 张宏飞, 等. 砒砂岩区主要造林树种枯落物持水性能及土壤物理性质[J]. 水土保持学报, 2020, 34(4):137-144. |
[Wu Xiaoguang, Liu Long, Zhang Hongfei, et al. Litter water-holding capacity and soil physical properties of main afforestation tree species in sandstone area[J]. Journal of Soil and Water Conservation, 2020, 34(4):137-144. ] | |
[32] | 梁晓娇, 王树力. 阿什河源头不同类型红松人工林枯落物及其土壤水文特性[J]. 水土保持学报, 2017, 31(1):140-145, 152. |
[Liang Xiaojiao, Wang Shuli. Litter and soil hydrological properties of Pinus korainensis plantations in Ashi River’s headstream[J]. Journal of Soil and Water Conservation, 2017, 31(1):140-145, 152. ] | |
[33] |
Hobbie S E, Shevtsova A, Chapin F S. Plant responses to species removal and experimental warming in Alaskan tussock tundra[J]. Oikos, 1999, 84(3):417-434.
doi: 10.2307/3546421 |
[34] |
Waite M, Sack L. How does moss photosynjournal relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats[J]. New Phytologist, 2010, 185(1):156-172.
doi: 10.1111/nph.2009.185.issue-1 |
[35] | 吕宸, 宫渊波, 龚伟, 等. 川西高寒山地灌丛草甸土壤水文效应特征[J/OL]. 应用与环境生物学报. [2021-04-13]. https://doi.org/10.19675/j.cnki.1006-687x.2020.04029 . |
[Lü Chen, Gong Yuanbo, Gong Wei, et al. Characteristics of soil hydrological effects of alpine shrub meadow in western Sichuan[J/OL]. Chinese Journal of Applied and Environmental Biology. [2021-04-13]. https://doi.org/10.19675/j.cnki.1006-687x.2020.04029 . ] | |
[36] | 曹文侠, 李文. 千里香杜鹃根系生物量时空动态特征及其生态适应性[J]. 草业学报, 2016, 25(7):52-61. |
[Cao Wenxia, Li Wen. Spatio-temporal trends for fine root biomass of alpine Rhododendron thymifolium and their significance for ecological adaptation in Qilian Mountains[J]. Acta Prataculturae Sinica, 2016, 25(7):52-61. ] | |
[37] | 张雪, 赵锦梅, 雷隆举, 等. 祁连山东段六种灌丛降雨再分配特征[J]. 中国草地学报, 2021, 43(1):83-89. |
[Zhang Xue, Zhao Jinmei, Lei Longju, et al. Characteristics of rainfall redistribution of six shrubs in eastern Qilian Mountain[J]. Chinese Journal of Grassland, 2021, 43(1):83-89. ] |
[1] | 刘文丽, 陈樟, 赵勇, 梁雨欣. 中亚5月土壤湿度异常对6月降水的影响[J]. 干旱区地理, 2024, 47(1): 38-47. |
[2] | 蔺阿荣, 周冬梅, 马静, 朱小燕, 江晶, 张军. 基于RWEQ模型的疏勒河流域防风固沙功能价值评估[J]. 干旱区地理, 2024, 47(1): 58-67. |
[3] | 温欣, 尚海丽, 黄显武, 李建伟, 李依临, 杨宏宇. 不同沉陷应力区土壤水分和溶质运移的模拟试验[J]. 干旱区地理, 2023, 46(9): 1481-1492. |
[4] | 李科, 丁建丽, 韩礼敬, 葛翔宇, 顾永昇, 周倩, 吕阳霞. 基于PlanetScope影像的典型绿洲土壤盐渍化数字制图[J]. 干旱区地理, 2023, 46(8): 1291-1302. |
[5] | 石聪, 陈礼瀚, 张怡菲, 何帅, 谢海霞. 新疆小海子灌区耕地土壤盐渍化特征研究[J]. 干旱区地理, 2023, 46(8): 1314-1323. |
[6] | 于晓燕, 汪星, 吕雯, 高元亢, 王永强, 王雁超. 黄土丘陵区带状柠条锦鸡儿林地深层土壤干化及根系分布[J]. 干旱区地理, 2023, 46(5): 753-762. |
[7] | 马迪乃·阿布力米提, 张勇娟, 王莉, 赵力, 李从娟. 膨润土对风沙土理化性质及苏丹草生长的影响[J]. 干旱区地理, 2023, 46(5): 763-772. |
[8] | 吴盈盈,王振亭. 河套平原土壤风蚀风险评估[J]. 干旱区地理, 2023, 46(3): 418-427. |
[9] | 蒋磊, 刘小龙, 郭帅, 何亮, 邢建磊, 郭俊杰. 基于Logistic回归分析的土壤盐渍化易发性评价——以新疆南疆塔里木灌区为例[J]. 干旱区地理, 2023, 46(11): 1858-1867. |
[10] | 梁樑, 郭晓淞, 陈汉杰, 徐皓帆, 周衍波, 谢邵文, 杨芬, 韦朝阳. 乌鲁木齐市核心城区绿地土壤重金属累积特征及生态风险[J]. 干旱区地理, 2023, 46(11): 1868-1878. |
[11] | 刘尊方, 雷浩川, 盛海彦. 基于XGBoost模型的湟水流域耕地土壤养分遥感反演[J]. 干旱区地理, 2023, 46(10): 1643-1653. |
[12] | 魏慧敏, 贾科利, 张旭, 张俊华. 基于机器学习和多光谱遥感的银川平原土壤盐分预测[J]. 干旱区地理, 2023, 46(1): 103-114. |
[13] | 石万鹏, 李备, 刘景涛, 卓子钧, 陈玺. 可可西里土壤凝结水形成特征及其影响因素研究[J]. 干旱区地理, 2022, 45(6): 1729-1739. |
[14] | 吴全, 姚喜军, 陈晓东, 赵敏, 赵欢, 云浩. 基于探地雷达的土体构型无损探测方法研究[J]. 干旱区地理, 2022, 45(6): 1860-1869. |
[15] | 张存厚, 段晓凤, 杨丽萍, 越昆, 张立. 草甸草原降水特征与土壤水分对降水脉动响应——以呼伦贝尔草原额尔古纳市为例[J]. 干旱区地理, 2022, 45(6): 1881-1889. |
|