收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2021, Vol. 44 ›› Issue (1): 27-35.doi: 10.12118/j.issn.1000–6060.2021.01.03

• 气候与水文 • 上一篇    下一篇

利用树木年轮重建阿勒泰地区1572—2014年初夏平均温度

牛军强1,2,3(),袁玉江2(),张同文2,陈峰4,张瑞波2,尚华明2,姜盛夏2   

  1. 1.新疆师范大学学报编辑部,新疆 乌鲁木齐 830017
    2.中国气象局乌鲁木齐沙漠气象研究所,中国气象局树木年轮理化研究重点开放实验室,新疆树木年轮生态实验室,新疆 乌鲁木齐 830002
    3.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
    4.云南大学国际河流与生态安全研究院,云南 昆明 650504
  • 收稿日期:2020-06-22 修回日期:2020-10-02 出版日期:2021-01-25 发布日期:2021-03-09
  • 通讯作者: 袁玉江
  • 作者简介:牛军强(1987-),男,编辑,硕士研究生,主要从事树木年轮气候学研究. E-mail: niujq01@163.com
  • 基金资助:
    新疆维吾尔自治区重点实验室开放课题(2018D04028);国家自然科学基金(41975095);天山青年计划-杰出青年科技人才(2019Q007);第二次青藏高原综合科学考察研究子专题(2019QZKK010206);中国公益性科研院所基本科研业务费专项资金项目(IDM201202);中国公益性科研院所基本科研业务费专项资金项目(IDM2018004)

Reconstruction of early summer temperature during 1572—2014 from tree-rings in the Altay Prefecture

NIU Junqiang1,2,3(),YUAN Yujiang2(),ZHANG Tongwen2,CHEN Feng4,ZHANG Ruibo2,SHANG Huaming2,JIANG Shengxia2   

  1. 1. Editorial Department of Journal of Xinjiang Normal University, Urumqi 830017, Xinjiang, China
    2. Institute of Desert Meteorology, China Meteorological Administration, Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Xinjiang Laboratory of Tree Ring Ecology, Urumqi 830002, Xinjiang, China
    3. College of Geography Science and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    4. Institute of International Rivers and Eco-security, Yunnan University, Kunming 650504, Yunnan, China
  • Received:2020-06-22 Revised:2020-10-02 Online:2021-01-25 Published:2021-03-09
  • Contact: Yujiang YUAN

摘要:

利用阿勒泰地区3个高海拔西伯利亚落叶松(Larix sibirica)采样点的树轮样本,建立树轮宽度区域标准化年表(DKH)。通过相关普查发现,DKH年表与阿勒泰地区7个气象站当年6月平均温度显著相关,相关系数为0.705 (P<0.00001),表明6月平均温度是影响树木年轮径向生长的主要气候限制因子。用DKH年表可较好地重建该地区1572—2014年共443 a的初夏平均温度,解释方差达49.6%,经验证表明温度重建序列是可信的。温度变化特征分析表明:重建初夏温度经历了10个偏暖和9个偏冷阶段,其中1605—1622年和1682—1723年分别是最暖和最冷的阶段,1875—1913年和1753—1804年分别是持续时间最长的偏暖和偏冷阶段。存在2.37~2.39 a、2.19 a的显著周期(P<0.05)和73.50 a、14.00 a、7.30 a、2.29 a、2.21 a的较显著周期(P<0.10)。在1684年、1719年前后均出现了由冷转暖的突变。空间相关分析表明文章重建的温度序列对阿勒泰地区温度具有较好的空间代表性。本研究重建的初夏温度序列与阿勒泰西部5—9月平均温度和阿尔泰山南坡温度序列相比较,具有较好的一致性。

关键词: 阿勒泰地区, 西伯利亚落叶松, 区域标准化年表, 平均温度变化

Abstract:

Dendroclimatology is one of the important methods for examining the past global climate changes. Here, the study area is the upper stream of China’s climate and weather, located on the Altay Mountains’ southern slope in northwestern China. Reconstructing the climatic variation series in this region is very important in recognizing the climatic variations on the Altay Mountains’ southern slope in the past. In the summer of 2014, the three tree-ring samples sites (trees of 79 and tree cores of 261) were collected for Larix sibirica from the upper tree line of forests at the midwestern Altay Mountains. We developed three kinds of tree-ring width chronologies by the ARSTAN program. In this study, we chose the regional tree-ring standard chronology (DKH) and used 7 meteorological station data close to the sampling site. Single correlation census showed that the correlation between the regional tree-ring chronology from the 7 meteorological stations and the average current June temperature is significant with the best single correlation coefficient of 0.705 (P<0.00001). In this study, we used the regional tree-ring standard chronology to reconstruct this region’s average June temperature since 1572 AD. The explained variance of the function was 49.6% (F=50.27948, P<0.00001). Many verifications showed that the reconstructed temperature series was reliable. After 11 a of reconstructed temperature series was calculated, in the past 443 a, we found the following: (1) 10 warm periods in 1577—1585, 1605—1622, 1636—1644, 1654—1681, 1724—1752, 1805—1808, 1831—1844, 1875—1913, 1950—1980, and 1993—2009; and (2) nine cold periods were found in 1586—1604, 1623—1635, 1645—1653, 1682—1723, 1753—1804, 1809—1830, 1845—1874, 1929—1938, and 1981—1992. The warmest period occurred in 1605—1622, and the coldest period occurred in 1682—1723. The 1875—1913 period was the most extended warm period, whereas the 1753—1804 period was the most prolonged cold period. Power spectrum analysis showed that there exist some significant change periods of 2.37-2.39 a and 2.19 a (P<0.05) and 73.50 a, 14.00 a, 7.30 a, and 2.29 a (P<0.10) in temperature. The cycle of 2.19 a may be related to the quasi-biennial oscillation. The moving t-test technique showed the abrupt change of temperature occurred in the 1684 and 1719 periods from cold to warm in this region. According to the spatial correlation analysis results, the temperature reconstructed series represents the early summer temperature changes in the Altay Prefecture. Our reconstructed mean June temperature series change trend, cold, and warm periods were consistent with the former reconstructed temperature series of the Altay Mountains western and south slopes.

Key words: Altay Prefecture, Larix sibirica, regional standardization chronology, average temperature change