干旱区地理 ›› 2025, Vol. 48 ›› Issue (5): 778-788.doi: 10.12118/j.issn.1000-6060.2024.381 cstr: 32274.14.ALG2024381
收稿日期:
2024-06-19
修回日期:
2024-09-05
出版日期:
2025-05-25
发布日期:
2025-05-13
通讯作者:
包红光(1987-),男,博士,副教授,主要从事城市生态与保护研究. E-mail: baohonguang2016@163.com作者简介:
闫晓云(1968-),女,博士,副教授,主要从事风景园林规划设计研究. E-mail: Lzyyxy0607@126.com
基金资助:
YAN Xiaoyun(), SUN Yiwei, BAO Hongguang(
)
Received:
2024-06-19
Revised:
2024-09-05
Published:
2025-05-25
Online:
2025-05-13
摘要: 为研究树木园中典型植物群落空气负离子浓度(NAIC)变化及影响因素,以呼和浩特市树木园为研究对象,于2022—2023年每个季节选择5 d晴朗无风或微风的天气,在08:00—18:00实地同步观测11个不同植物群落及对照点环境指标,分析比较不同植物群落结构NAIC变化规律,并探究影响NAIC的环境指标。结果表明:(1) 树木园内植物群落NAIC在春季(611~1115个·cm-3)、夏季(714~1033个·cm-3)、秋季(678~1120个·cm-3)显著高于冬季(202~372个·cm-3),但同一季节中彼此差异不显著;NAIC日变化趋势在春季呈“U”型曲线,夏季和秋季波动变化,冬季为先下降后上升,峰谷值出现时间存在季节差异。(2) 植物群落空气清洁度在春季、夏季、秋季能够达到最清洁等级,冬季大部分时间处于清洁至接受等级。(3) 环境因子对NAIC的影响因季节而异,不同季节影响NAIC变化的主要环境因子不同。综合来看,小粒径空气颗粒物PM2.5、PM1.0是影响NAIC的主要因素;对NAIC变异产生主要影响的是不同粒径空气颗粒物的直接作用。
闫晓云, 孙艺玮, 包红光. 基于通径分析的树木园不同植物群落空气负离子变化特征[J]. 干旱区地理, 2025, 48(5): 778-788.
YAN Xiaoyun, SUN Yiwei, BAO Hongguang. Change characteristics of negative air ions of different plant communities in arboretum based on path analysis[J]. Arid Land Geography, 2025, 48(5): 778-788.
表1
观测点植被概况"
观测点 | 植物群落 | 主要植物种类 | 平均高度/m | 平均胸径/cm | |
---|---|---|---|---|---|
乔木层 | 灌木层 | ||||
S1 | 乔草型针叶林 | 樟子松(Pinus sylvestris) | 20.32±0.22 | - | 20.57±0.03 |
S2 | 乔草型针叶林 | 樟子松(Pinus sylvestris) | 22.16±0.18 | - | 16.96±0.16 |
侧柏(Platycladus orientalis) | |||||
杜松(Juniperus rigida) | |||||
S3 | 乔草型针叶林 | 杜松(Juniperus rigida) | 21.18±0.31 | - | 23.91±0.15 |
S4 | 乔灌草型针阔林 | 油松(Pinus tabuliformis) | 19.97±0.33 | 5.22±0.28 | 14.81±0.27 |
紫丁香(Syringa oblata) | |||||
榆叶梅(Prunus triloba) | |||||
S5 | 乔草型针叶林 | 油松(Pinus tabuliformis) | 19.34±0.14 | - | 21.98±0.31 |
S6 | 乔灌草型针阔林 | 油松(Pinus tabuliformis) | 22.61±0.23 | 6.19±0.37 | 22.91±0.26 |
紫丁香(Syringa oblata) | |||||
黑茶藨子(Ribes nigrum) | |||||
S7 | 乔灌草型针阔林 | 云杉(Picea asperata) | 19.31±0.32 | 5.24±0.41 | 18.05±0.21 |
榆叶梅(Prunus triloba) | |||||
山桃(Prunus davidiana) | |||||
接骨木(Sambucus williamsii) | |||||
S8 | 灌草型阔叶林 | 紫丁香(Syringa oblata) | - | 5.61±0.22 | 8.61±0.32 |
S9 | 乔草型针叶林 | 云杉(Picea asperata) | 20.13±0.21 | 24.27±0.17 | |
S10 | 乔草型阔叶林 | 三花槭(Acer triflorum) | 18.21±0.27 | - | 8.64±0.19 |
元宝槭(Acer truncatum) | |||||
S11 | 灌木型阔叶林 | 紫丁香(Syringa oblata) | - | 5.43±0.32 | 4.32±0.16 |
CK | 对照点 | 硬质铺装广场 | - | - | - |
表3
不同季节植物群落空气清洁度"
观测点 | 春季 | 夏季 | 秋季 | 冬季 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CI | 等级 | CI | 等级 | CI | 等级 | CI | 等级 | ||||
S1 | 15.92±1.93Aa | 最清洁 | 1.34±0.52Ab | 最清洁 | 12.93±7.48ABab | 最清洁 | 1.46±1.17Ab | 最清洁 | |||
S2 | 10.72±5.89Aa | 最清洁 | 1.16±0.47Ab | 最清洁 | 9.03±3.99ABa | 最清洁 | 1.81±1.28Ab | 最清洁 | |||
S3 | 12.88±7.11Aa | 最清洁 | 1.58±0.75Ab | 最清洁 | 12.89±7.88ABa | 最清洁 | 0.69±0.62Ab | 中等 | |||
S4 | 4.44±1.68Aab | 最清洁 | 1.55±0.84Ab | 最清洁 | 8.56±3.04ABa | 最清洁 | 0.45±0.35Ab | 接受 | |||
S5 | 5.06±2.15Ab | 最清洁 | 1.18±0.53Ab | 最清洁 | 12.07±6.26ABa | 最清洁 | 0.39±0.24Ab | 接受 | |||
S6 | 10.88±6.35Aa | 最清洁 | 2.47±1.86Aa | 最清洁 | 5.92±3.56Ba | 最清洁 | 0.90±0.69Aa | 清洁 | |||
S7 | 16.69±4.48Aa | 最清洁 | 0.85±0.35Ab | 清洁 | 6.56±1.85ABab | 最清洁 | 1.14±0.98Ab | 最清洁 | |||
S8 | 16.94±5.52Aa | 最清洁 | 2.52±0.17Aa | 最清洁 | 15.37±10.48Aa | 最清洁 | 1.43±1.28Aa | 最清洁 | |||
S9 | 8.96±5.23Aa | 最清洁 | 0.90±0.37Ab | 清洁 | 3.67±1.81Bab | 最清洁 | 0.84±0.68Ab | 清洁 | |||
S10 | 14.98±2.11Aa | 最清洁 | 1.57±0.90Aa | 最清洁 | 9.50±4.20ABab | 最清洁 | 0.56±0.50Aa | 中等 | |||
S11 | 10.00±3.92Aa | 最清洁 | 1.26±0.57Aa | 最清洁 | 4.65±2.08Ba | 最清洁 | 0.78±0.62Aa | 清洁 | |||
CK | 12.86±6.32Aa | 最清洁 | 0.74±0.33Aa | 清洁 | 9.34±6.64ABab | 最清洁 | 0.96±0.84Aa | 清洁 |
表4
NAIC与环境因子相关系数"
季节 | TSP | PM10 | PM2.5 | PM1.0 | V | RH | T | N+ | DT | AT |
---|---|---|---|---|---|---|---|---|---|---|
春季 | -0.08 | 0.40** | 0.40** | 0.39** | -0.08 | 0.10 | -0.26** | -0.11 | 0.01 | -0.05 |
夏季 | -0.57** | -0.42** | -0.47** | -0.60** | -0.06 | 0.03 | -0.06 | 0.35** | -0.01 | -0.02 |
秋季 | -0.18* | -0.09 | -0.15* | -0.25** | 0.01 | -0.15* | 0.06 | -0.12 | -0.10 | 0.07 |
冬季 | -0.07 | -0.06 | -0.10 | -0.09 | 0.03 | 0.03 | 0.17** | -0.10 | 0.19** | -0.02 |
四季 | 0.11** | -0.07* | 0.25** | 0.22** | 0.04 | 0.01 | 0.07 | -0.21** | -0.02 | 0.02 |
表5
不同季节环境因子对NAIC影响的通径系数"
季节 | 自变量 | 直接通径系数 | 间接通径系数 | 对R2的贡献 | 决策系数 | ||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | |||||
春季 | PM10(X1) | 0.28 | - | 0.14 | -0.02 | - | - | 0.11 | 0.15 |
PM2.5(X2) | 0.23 | 0.17 | - | -0.01 | - | - | 0.09 | 0.13 | |
N+(X3) | -0.15 | 0.03 | 0.01 | - | - | - | 0.02 | 0.01 | |
夏季 | PM1.0(X1) | -0.98 | - | 0.39 | - | - | - | 0.58 | 0.20 |
PM2.5(X2) | 0.43 | -0.89 | - | - | - | - | -0.20 | -0.58 | |
秋季 | PM1.0(X1) | -0.23 | - | -0.07 | 0.06 | -0.01 | - | 0.06 | 0.06 |
TSP(X2) | -0.49 | -0.03 | - | 0.35 | -0.01 | - | 0.09 | -0.06 | |
PM10(X3) | 0.40 | -0.03 | -0.44 | - | -0.02 | - | -0.03 | -0.23 | |
RH(X4) | -0.14 | -0.01 | -0.05 | 0.04 | - | - | 0.02 | 0.22 | |
冬季 | DT(X1) | 0.24 | - | -0.08 | 0.03 | - | - | 0.05 | -0.50 |
PM2.5(X2) | -1.54 | 0.01 | - | 1.42 | - | - | 0.16 | -2.04 | |
PM1.0(X3) | 1.43 | 0.01 | -1.53 | - | - | - | -0.13 | -2.30 | |
四季 | PM2.5(X1) | 2.53 | - | -0.34 | -1.84 | 0.001 | -0.11 | 0.63 | -5.15 |
PM10(X2) | -0.68 | 1.27 | - | -0.58 | 0.01 | -0.08 | 0.05 | 0.09 | |
PM1.0(X3) | -1.91 | 2.43 | -0.21 | - | -0.01 | -0.10 | -0.41 | -0.87 | |
N+(X4) | -0.19 | -0.06 | 0.04 | -0.01 | - | 0.01 | 0.04 | 0.03 | |
DT(X5) | -0.19 | 1.49 | -0.30 | -1.02 | 0.01 | - | 0.01 | 0.01 |
[1] | Yan X J, Wang H R, Hou Z Y, et al. Spatial analysis of the ecological effects of negative air ions in urban vegetated areas: A case study in Maiji, China[J]. Urban Forestry & Urban Greening, 2015, 14(3): 636-645. |
[2] |
Hao P W, Shi C Q, Zhao Y N, et al. Temporal variation characteristics of negative air ion concentration and air quality evaluation in Songshan National Nature Reserve, Beijing[J]. Journal of Resources and Ecology, 2023, 14(6): 1156-1163.
doi: 10.5814/j.issn.1674-764x.2023.06.005 |
[3] | Wang H, Wang B, Niu X, et al. Study on the change of negative air ion concentration and its influencing factors at different spatio-temporal scales[J]. Global Ecology and Conservation, 2020, 23: e01008, doi: 10.1016/j.gecco.2020.e01008. |
[4] |
Krueger A P, Reed E J. Biological impact of small air ions[J]. Science, 1976, 193(4259): 1209-1213.
pmid: 959834 |
[5] |
Ryushi T, Kita I, Sakurai T, et al. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise[J]. International Journal of Biometeorology, 1998, 41(3): 132-136.
pmid: 9531858 |
[6] | Xiao S, Wei T J, Petersen J D, et al. Biological effects of negative air ions on human health and integrated multiomics to identify biomarkers: A literature review[J]. Environmental Science and Pollution Research, 2023, 30(27): 69824-69836. |
[7] | Yun J Y, Yao W F, Wang X Y, et al. Daily dynamics of forest air negative ion concentration in spring and the relationship of influencing factors: Results of field monitoring[J]. Air Quality, Atmosphere & Health, 2023, 17(3): 501-511. |
[8] |
侯秀娟, 闫晓云, 王波, 等. 夏季干旱半干旱城市公园绿地空气负离子与空气颗粒物变化特征[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 212-220.
doi: 10.12302/j.issn.1000-2006.202104048 |
[Hou Xiujuan, Yan Xiaoyun, Wang Bo, et al. Variation characteristics of the air anion and air particulate matter in arid and semi-arid urban park green spaces during summer[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(4): 212-220. ] | |
[9] | 张家兴, 蒋丽娅, 高峻, 等. 华北土石山区典型人工林空气负离子变化及其影响因子分析[J]. 林业科学研究, 2023, 36(2): 61-69. |
[Zhang Jiaxing, Jiang Liya, Gao Jun, et al. Variation of negative air ions and its influencing factors in typical plantations in rocky mountain area of north China[J]. Forestry Research, 2023, 36(2): 61-69. ] | |
[10] | 崔虎亮, 李仲昊, 曹如姬. 太岳山区不同森林康养村落空气负离子浓度及气象因素的关系[J]. 西部林业科学, 2022, 51(2): 27-34. |
[Cui Huliang, Li Zhonghao, Cao Ruji. Relationships between the negative air ions and meteorological factors in different forest villages of Taiyue Moutain[J]. Journal of West China Forestry Science, 2022, 51(2): 27-34. ] | |
[11] |
郑诗禹, 张绿水, 郭晓敏, 等. 不同森林郁闭度环境内空气负氧离子的时空变化及环境影响要素研究——以广州帽峰山为例[J]. 生态环境学报, 2021, 30(11): 2204-2212.
doi: 10.16258/j.cnki.1674-5906.2021.11.011 |
[Zheng Shiyu, Zhang Lüshui, Guo Xiaomin, et al. Spatial and temporal variations of negative oxygen ions in the air and environmental influencing factors in forest environment with different canopy densities: A case study of Maofeng Mountain in Guangzhou[J]. Ecology and Environmental Sciences, 2021, 30(11): 2204-2212. ] | |
[12] | 冯慧君, 安静, 杨广斌, 等. 城市湿地公园植物群落空气负离子浓度及影响因素——以花溪十里河滩国家城市湿地公园为例[J]. 环境化学, 2023, 42(10): 3487-3499. |
[Feng Huijun, An Jing, Yang Guangbin, et al. Air anion concentration and influencing factors of plant community in urban wetland park: A case study of Huaxi Shilihetan National Urban Wetland Park[J]. Environmental Chemistry, 2023, 42(10): 3487-3499. ] | |
[13] | Li A B, Li Q L, Yang Y H, et al. Stand structure and environment jointly determine negative air ion concentrations in forests: Evidence from concurrent on-site monitoring in four typical subtropical forests during the growing season[J]. Environmental and Experimental Botany, 2024, 220: 105684, doi: 10.1016/J.ENVEXPBOT.2024.105684. |
[14] |
李少宁, 李嫒, 鲁绍伟, 等. 北京西山国家森林公园中空气负离子浓度与气象因子的相关性研究[J]. 生态环境学报, 2021, 30(3): 541-547.
doi: 10.16258/j.cnki.1674-5906.2021.03.012 |
[Li Shaoning, Li Yuan, Lu Shaowei, et al. Correlation between air anion concentration and meterological factors in Beijing Xishan National Forest Park[J]. Ecology and Environmental Sciences, 2021, 30(3): 541-547. ] | |
[15] | Wang R, Chen Q, Wang D X. Effects of altitude, plant communities, and canopies on the thermal comfort, negative air ions, and airborne particles of mountain forests in summer[J]. Sustainability, 2022, 14(7): 3882, doi: 10.3390/SU14073882. |
[16] |
马红璐, 祁栋林, 赵彤, 等. 西宁市夏季居民区空气负离子浓度变化特征及其影响因子分析[J]. 干旱区地理, 2024, 47(8): 1358-1366.
doi: 10.12118/j.issn.1000-6060.2023.428 |
[Ma Honglu, Qi Donglin, Zhao Tong, et al. Variation characteristics and influencing factors of air negative ion concentration in summer residential areas of Xining City[J]. Arid Land Geography, 2024, 47(8): 1358-1366. ]
doi: 10.12118/j.issn.1000-6060.2023.428 |
|
[17] | 马圆, 朱荣, 杨荣, 等. 宁夏大学校园不同绿地类型夏季小气候效应[J]. 中国城市林业, 2024, 22(2): 26-35. |
[Ma Yuan, Zhu Rong, Yang Rong, et al. Microclimate effect of green spaces of different types in Ningxia University campus in summer[J]. Journal of Chinese Urban Forestry, 2024, 22(2): 26-35. ] | |
[18] | 杨畅, 王月容, 汤志颖, 等. 不同群落结构风景游憩林生态保健效应——以北京西山国家森林公园为例[J]. 生态学报, 2022, 42(16): 6499-6513. |
[Yang Chang, Wang Yuerong, Tang Zhiying, et al. Ecological health care effects of scenic recreational forests with different community structures: A case study of Beijing Xishan National Forest Park[J]. Acta Ecologica Sinica, 2022, 42(16): 6499-6513. ] | |
[19] | 朱舒欣, 何茜, 苏艳, 等. 不同地理空间城市森林空气负离子浓度及其影响因素研究[J]. 北京林业大学学报, 2023, 45(11): 66-77. |
[Zhu Shuxin, He Qian, Su Yan, et al. Negative air ion concentration and its influencing factors of urban forest in different geographical spaces[J]. Journal of Beijing Forestry University, 2023, 45(11): 66-77. ] | |
[20] | 韩文静, 张昶, 张旭, 等. 湖南省森林植物园游客空间分布格局及可达性[J]. 中国城市林业, 2021, 19(5): 34-39. |
[Han Wenjing, Zhang Chang, Zhang Xu, et al. Tourists spatial distribution pattern and accessibility in Hunan forest botanical garden[J]. Journal of Chinese Urban Forestry, 2021, 19(5): 34-39. ] | |
[21] | 杨丹晨, 陈羿汝, 冯照馨, 等. 基于城市生物多样性提升的杨凌树木园景观规划设计研究[J]. 西北林学院学报, 2023, 38(1): 266-272. |
[Yang Danchen, Chen Yiru, Feng Zhaoxin, et al. Landscape planning and design of Yangling arboretum based on the promotion of urban biodiversity[J]. Journal of Northwest Forestry University, 2023, 38(1): 266-272. ] | |
[22] | 任海, 文香英, 廖景平, 等. 试论植物园功能变迁与中国国家植物园体系建设[J]. 生物多样性, 2022, 30(4): 197-207. |
[Ren Hai, Wen Xiangying, Liao Jingping, et al. The view on functional changes of botanical gardens and the establishment of China’s national botanical garden system[J]. Biodiversity Science, 2022, 30(4): 197-207. ] | |
[23] | Wan X, Zhou R Y, Li L W, et al. Factors influencing the concentration of negative air ions in urban forests of the Zhuyu Bay Scenic Area in Yangzhou, China[J]. Atmosphere, 2024, 15(3): 15030316, doi: 10.3390/ATMOS15030316. |
[24] | 邵海荣, 贺庆棠, 阎海平, 等. 北京地区空气负离子浓度时空变化特征的研究[J]. 北京林业大学学报, 2005, 27(3): 35-39. |
[Shao Hairong, He Qingtang, Yan Haiping, et al. Spatio-temporal changes of negative air ion concentrations in Beijing[J]. Journal of Beijing Forestry University, 2005, 27(3): 35-39. ] | |
[25] | 王茜. 福州旗山森林公园毛竹游憩林生态保健功能研究[D]. 北京: 中国林业科学研究院, 2018. |
[Wang Qian. Study on ecological health functions of Phyllostachys pubescens forest in Qishan Mountain of Fuzhou[D]. Beijing: Chinese Academy of Forestry, 2018. ] | |
[26] | 包红光, 闫晓云, 王波, 等. 干旱半干旱地区城市公园绿地空气负离子浓度特征及影响因素[J]. 东北林业大学学报, 2024, 52(5): 82-88. |
[Bao Hongguang, Yan Xiaoyun, Wang Bo, et al. The characteristics and influencing factors of air negative ion concentration in urban park green spaces in arid and semi-arid regions[J]. Journal of Northeast Foreatry University, 2024, 52(5): 82-88. ] | |
[27] | Li A B, Zhou B Z, Li C Y. Negative air ion effect of six typical subtropical tree species based on control experiment[J]. Forest Research, 2019, 32(4): 120-128. |
[28] | Peters E B, Mcfadden J P, Montgomery R A. Biological and environmental controls on tree transpiration in a suburban landscape[J]. Journal of Geophysical Research: Biogeosciences, 2010, 115(G4): G04006, doi: 10.1029/2009JG001266. |
[29] | 潘剑彬, 董丽, 廖晓圣, 等. 北京奥林匹克森林公园空气负离子浓度及其影响因素[J]. 北京林业大学学报, 2011, 33(2): 59-64. |
[Pan Jianbin, Dong Li, Liao Xiaosheng, et al. Negative air ion concentration and affecting factors in Beijing Olympic Forest Park[J]. Journal of Beijing Forestry University, 2011, 33(2): 59-64. ] | |
[30] | 韩静波, 张智, 张维康, 等. 沈阳东陵公园不同功能分区空气颗粒物与负离子变化[J]. 生态学杂志, 2020, 39(9): 3099-3107. |
[Han Jingbo, Zhang Zhi, Zhang Weikang, et al. Variation of particulate matter and negative air ions in different functional areas of Dongling Park in Shenyang[J]. Chinese Journal of Ecology, 2020, 39(9): 3099-3107. ]
doi: 10.13292/j.1000-4890.202009.036 |
|
[31] |
刘双芳, 张维康, 韩静波, 等. 不同植被结构对空气质量的调控功能[J]. 生态环境学报, 2020, 29(8): 1602-1609.
doi: 10.16258/j.cnki.1674-5906.2020.08.011 |
[Liu Shuangfang, Zhang Weikang, Han Jingbo, et al. Regulation of air quality by different vegetation structures in a green space[J]. Ecology and Environmental Sciences, 2020, 29(8): 1602-1609. ] | |
[32] | 王茜, 王月容, 古琳. 北京奥森公园侧柏林空气颗粒物不同季节变化规律[J]. 科学技术与工程, 2022, 22(17): 6927-6936. |
[Wang Qian, Wang Yuerong, Gu Lin. Seasonal variation of airborne particulate matter of Platycladus orientalis forest in Olympic Forest Park of Beijing[J]. Science Technology and Engineering, 2022, 22(17): 6927-6936. ] | |
[33] | 唐堇洢, 王梦楠, 胡希军, 等. 上杭城区空气负离子浓度时空分布及影响因素[J]. 湖南师范大学自然科学学报, 2023, 46(5): 124-135. |
[Tang Jinyi, Wang Mengnan, Hu Xijun, et al. Spatio-temporal distribution of negative air ion concentration and its influencing factors in Shanghang City[J]. Journal of Natural Science of Hunan Normal University, 2023, 46(5): 124-135. ] | |
[34] |
焦美玲, 韩晶, 曹彦超, 等. 庆阳市空气污染及气象因子影响特征分析[J]. 干旱区地理, 2024, 47(6): 932-941.
doi: 10.12118/j.issn.1000-6060.2023.302 |
[Jiao Meiling, Han Jing, Cao Yanchao, et al. Characteristics of air pollution and meteorological factors in Qingyang City[J]. Arid Land Geography, 2024, 47(6): 932-941. ]
doi: 10.12118/j.issn.1000-6060.2023.302 |
|
[35] | 时聪, 鲁绍伟, 赵娜, 等. 北京城市森林空气负离子浓度对温度的响应[J]. 生态学杂志, 2023, 42(6): 1365-1372. |
[Shi Cong, Lu Shaowei, Zhao Na, et al. Responses of negative air ion concentration to temperature in urban forests of Beijing[J]. Chinese Journal of Ecology, 2023, 42(6): 1365-1372. ]
doi: DOI: 10.13292/j.1000-4890.202306.018 |
|
[36] | 包红光, 闫晓云, 侯秀娟, 等. 干旱半干旱城市公园绿地PM2.5与空气负离子浓度动态特征[J]. 生态学杂志, 2023, 42(1): 170-179. |
[Bao Hongguang, Yan Xiaoyun, Hou Xiujuan, et al. Temporal variation of PM2.5 and air anion concentration in urban park greenspace of arid and semi-arid area[J]. Chinese Journal of Ecology, 2023, 42(1): 170-179. ] |
[1] | 马红璐, 祁栋林, 赵彤, 曹晓云, 赵全宁, 张睿. 西宁市夏季居民区空气负离子浓度变化特征及其影响因子分析[J]. 干旱区地理, 2024, 47(8): 1358-1366. |
[2] | 康利刚, 曹生奎, 曹广超, 严莉, 陈链璇, 李文斌, 赵浩然. 青海湖流域地表温度时空变化特征研究[J]. 干旱区地理, 2023, 46(7): 1084-1097. |
[3] | 刘尊方, 雷浩川, 盛海彦. 基于XGBoost模型的湟水流域耕地土壤养分遥感反演[J]. 干旱区地理, 2023, 46(10): 1643-1653. |
[4] | 潘群,施海洋,张文强,罗格平,陈春波. 基于Cubist模型的天山北坡草地鼠群密度时空分布特征[J]. 干旱区地理, 2022, 45(4): 1200-1211. |
[5] | 雷杨娜, 张侠, 赵晓萌. 1971—2018 年陕西省人体舒适度时空分布特征研究[J]. 干旱区地理, 2020, 43(6): 1417-1425. |
[6] | 罗庆辉, 许仲林, 徐泽源, 李路, 常亚鹏, 徐昕亿, 宋昕妮. 天山雪岭云杉个体生物量分配及其变化规律的研究 [J]. 干旱区地理, 2019, 42(6): 1378-1386. |
[7] | 张斯琦, 陈辉, 宋明华, 付阳, 牛慧慧, 杨祎, 张博雄. 2000—2015年柴达木盆地植被覆盖度时空变化及其与环境因子的关系[J]. 干旱区地理, 2019, 42(5): 1124-1132. |
[8] | 任修琳, 李宏亮, 张玉虎, 蒲晓, 张立林. 2000—2015年三江平原主要作物需水量特征及影响因素分析[J]. 干旱区地理, 2019, 42(4): 854-866. |
[9] | 常兆丰, 张大彪, 段小峰, 韩福贵, 仲生年, 王强强, 张剑挥. 基于分层投影盖度的荒漠植被相对生态功能测定[J]. 干旱区地理, 2016, 39(4): 777-784. |
[10] | 周在明, 赵淑惠. 华北半干旱平原区表层土壤盐分累积的影响因素分析[J]. 干旱区地理, 2015, 38(5): 976-984. |
[11] | 陈伟涛,孙自永,李显巨,杨俊仓. 内陆干旱区天然植物群落遥感制图研究——以敦煌盆地为例[J]. 干旱区地理, 2014, 37(6): 1257-1263. |
[12] | 闫人华,熊黑钢,冯振华,张芳,瞿秀华. 绿洲-荒漠过渡带芨芨草地SPAC系统蒸散与多环境因子关系分析[J]. 干旱区地理, 2013, 36(5): 889-896. |
[13] | 张毓涛,李吉玫. 新疆主要城市不同生态功能区夏季空气负离子特征[J]. 干旱区地理, 2012, 35(6): 864-874. |
[14] | 王宝强;薛俊增;刘婧;朱新英;吴惠仙. 新疆阿勒泰地区不同盐池大型底栖动物的群落结构[J]. 干旱区地理, 2012, 35(02): 267-273. |
[15] | 常兆丰,,,,韩福贵,,仲生年,,,王强强,,,张应昌,,,汪媛艳,,. 民勤荒漠区几种主要固沙植物群落的水分平衡特性[J]. 干旱区地理, 2012, 35(01): 139-144. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 175
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|