[1] |
Dobson A P, Bradshaw A D, Baker A J M. Hopes for the future: Restoration ecology and conservation biology[J]. Science, 1997, 277(5325): 515-522.
|
[2] |
Immerzeel W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7790): 364-369.
|
[3] |
Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686-688.
|
[4] |
Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall[J]. Journal of Hydrology, 2000, 228(1): 113-129.
|
[5] |
Langella G, Basile A, Bonfante A, et al. High-resolution space-time rainfall analysis using integrated ANN inference systems[J]. Journal of Hydrology, 2010, 387(3): 328-342.
|
[6] |
Kummerow C, Hong Y, Olson W S, et al. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors[J]. Journal of Applied Meteorology, 2001, 40(11): 1801-1820.
|
[7] |
Kummerow C, Simpson J, Thiele O, et al. The status of the tropical rainfall measuring mission (TRMM) after two years in orbit[J]. Journal of Applied Meteorology and Climatology, 2000, 39(12): 1965-1982.
|
[8] |
Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38-55.
|
[9] |
Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission (TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 809-817.
|
[10] |
Huffman G J, Adler R F, Arkin P, et al. The global precipitation climatology project (GPCP) combined precipitation dataset[J]. Bulletin of the American Meteorological Society, 1997, 78(1): 5-20.
|
[11] |
Adler R F, Huffman G J, Chang A, et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 2003, 4(6): 1147-1167.
|
[12] |
Huffman G J, Adler R F, Bolvin D T, et al. Improving the global precipitation record: GPCP version 2.1[J]. Geophysical Research Letters, 2009, 36(17): L17808, doi: 10.1029/2009GL040000.
|
[13] |
Adler R F, Sapiano M R P, Huffman G J, et al. The global precipitation climatology project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation[J]. Atmosphere, 2018, 9(4): 138, doi: 10.3390/atmos9040138.
|
[14] |
Backer D, Billing T. Validating famine early warning systems network projections of food security in Africa, 2009—2020[J]. Global Food Security, 2021, 29: 100510, doi: 10.1016/j.gfs.2021.100510.
|
[15] |
Smith E A, Asrar G, Furuhama Y, et al. Measuring precipitation from space[M]. Dordrecht: Springer, 2007: 611-653.
|
[16] |
Kubota T, Shige S, Hashizume H, et al. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 2259-2275.
|
[17] |
Huffman G J, Adler R F, Morrissey M M, et al. Global precipitation at one-degree daily resolution from multisatellite observations[J]. Journal of Hydrometeorology, 2001, 2(1): 36-50.
|
[18] |
Xie P, Arkin P A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs[J]. Bulletin of the American Meteorological Society, 1997, 78(11): 2539-2558.
|
[19] |
Muñoz-Sabater J, Dutra E, Agustí-Panareda A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science Data, 2021, 13(9): 4349-4383.
|
[20] |
Okamoto K, Takahashi N, Iwanami K, et al. High precision and high resolution global precipitation map from satellite data[C]// IEEE. 2008 Microwave Radiometry and Remote Sensing of the Environment. Florence: IEEE, 2008: 1-4.
|
[21] |
Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
|
[22] |
Turk F J, Rohaly G D, Hawkins J, et al. Meteorological applications of precipitation estimation from combined SSM/I, TRMM and infrared geostationary satellite data[M]. London: CRC Press, 1999: 353-363.
|
[23] |
Hsu K, Gao X, Sorooshian S, et al. Precipitation estimation from remotely sensed information using artificial neural networks[J]. Journal of Applied Meteorology and Climatology, 1997, 36(9): 1176-1190.
|
[24] |
Huffman G J. Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG)[M]. Cham: Springer, 2020: 343-353.
|
[25] |
Immerzeel W, Rutten M, Droogers P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment, 2009, 113(2): 362-370.
|
[26] |
Park N W. Spatial downscaling of TRMM precipitation using geostatistics and fine scale environmental variables[J]. Advances in Meteorology, 2013, 2013(1): 237126, doi: 10.1155/2013/237126.
|
[27] |
Shi Y L, Song L. Spatial downscaling of monthly TRMM precipitation based on EVI and other geospatial variables over the Tibetan Plateau from 2001 to 2012[J]. Mountain Research and Development, 2015, 35(2): 180-194.
|
[28] |
Ma Z Q, Shi Z, Zhou Y, et al. A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai-Tibet Plateau with the effects of systematic anomalies removed[J]. Remote Sensing of Environment, 2017, 200: 378-395.
|
[29] |
Mateus P, Borma L S, da Silva R D, et al. Assessment of two techniques to merge ground-based and TRMM rainfall measurements: A case study about Brazilian Amazon rainforest[J]. GIScience & Remote Sensing, 2016, 53(6): 689-706.
|
[30] |
Duan Z, Bastiaanssen W G M. First results from version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure[J]. Remote Sensing of Environment, 2013, 131: 1-13.
|
[31] |
Kyriakidis P C. A geostatistical framework for area-to-point spatial interpolation[J]. Geographical Analysis, 2004, 36(3): 259-289.
|
[32] |
Goovaerts P. Combining areal and point data in geostatistical interpolation: Applications to soil science and medical geography[J]. Mathematical Geosciences, 2010, 42(5): 535-554.
pmid: 21132098
|
[33] |
Duan Z, Liu J Z, Tuo Y, et al. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales[J]. Science of the Total Environment, 2016, 573: 1536-1553.
|
[34] |
Chen Y Y, Huang J F, Sheng S X, et al. A new downscaling-integration framework for high-resolution monthly precipitation estimates: Combining rain gauge observations, satellite-derived precipitation data and geographical ancillary data[J]. Remote Sensing of Environment, 2018, 214: 154-172.
|
[35] |
李运龙, 熊立华, 闫磊. 基于地理权重回归克里金的降水数据融合及其在水文预报中的应用[J]. 长江流域资源与环境, 2017, 26(9): 1360-1369.
|
|
[Li Yunlong, Xiong Lihua, Yan Lei. A geographically weighted regression kriging approach for TRMM-rain gauge data merging and its application in hydrological forecasting[J]. Resources and Environment in the Yangtze Basin, 2017, 26(9): 1360-1369.]
|
[36] |
Li X H, Zhang Q, Xu C Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang Lake Basin[J]. Journal of Hydrology, 2012, 426: 28-38.
|
[37] |
韩雅, 朱文博, 李双成. 基于GWR模型的中国NDVI与气候因子的相关分析[J]. 北京大学学报(自然科学版), 2016, 52(6): 1125-1133.
|
|
[Han Ya, Zhu Wenbo, Li Shuangcheng. Modelling Relationship between NDVI and climatic factors in China using geographically weighted regression[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(6): 1125-1133.]
|
[38] |
Xu S G, Wu C Y, Wang L, et al. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics[J]. Remote Sensing of Environment, 2015, 162: 119-140.
|
[39] |
Foody G M. Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI-rainfall relationship[J]. Remote Sensing of Environment, 2003, 88(3): 283-293.
|