[1] |
欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态 经济价值的初步研究[J]. 生态学报, 1999, 19(5) : 19-25. [OUY⁃ ANG Zhiyun, WANG Xiaoke, MIAO Hong. A primary study on Chinese terrestrial ecosystem services and their ecological eco⁃ nomic values[J]. Acta Ecologica Sinica, 1999, 19(5): 19-25. ]
|
[2] |
张峰, 周广胜, 王玉辉. 基于 CASA 模型的内蒙古典型草原植被 净初级生产力动态模拟[J]. 植物生态学报, 2008, 32(4): 786- 797. [ZHANG Feng, ZHOU Guangsheng, WANG Yuhui. Dynam⁃ ics simulation of net primary productivity by a satellite data-driv⁃ ing CASA model in Inner Mongolian typical steppe, China[J]. Jour⁃ nal of Plant Ecology, 2008, 32(4): 786-797. ]
|
[3] |
赵灿, 张宇清, 秦树高, 等. 3 种典型沙生灌木 NPP 及其分配格 局 [J]. 北 京 林 业 大 学 学 报, 2014, 36(5): 62- 67. [ZHAO Chan, ZHANG Yuqing, QING Shugao, et al. NPP and its distribution pat⁃ tern of three typical sandy shrubs[J]. Journal of Beijing Forestry University, 2014, 36(5) : 62-67. ]
|
[4] |
SCHULZE E D, LLOYD J, KELLIHER F M, et al. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink: A synthesis[J]. Global Change Biology, 1999, 5 (6): 703-722.
|
[5] |
方精云, 朴世龙, 赵淑清. CO2 失汇与北半球中高纬度陆地生态 系 统 的 碳 汇 [J]. 植 物 生 态 学 报, 2001, 25(5): 594- 602. [FANG Jingyun, PIAO Shilong, ZHAO Shuqing. The carbon sink the role of the middle and high latitudes terrestrial ecosystems in the north⁃ ern hemisphere[J]. Chinese Journal of Plant Ecology, 2001, 25(5) : 594-602. ]
|
[6] |
邱丽莎, 何毅, 张立峰, 等. 祁连山 MODIS LST 时空变化特征及 影响因素分析[J]. 干旱区地理, 2020, 43(3): 726-737. [QIU Li⁃ sha, HE Yi, ZHANG Lifeng, et al. Grassland yield change in Qing⁃ hai Province based on MODIS data[J]. Arid Land Geography, 2020, 43(3): 726-737. ]
|
[7] |
LIETH H. Modeling the primary productivity of the World[J]. Pri⁃ mary Productivity of the Biosphere, 1975, 14(1): 237-263.
|
[8] |
BRADFORD J B, HICKE J A, LAUENROTH W K. The relative importance of light-use efficiency modifications from environmen⁃ tal conditions and cultivation for estimation of large-scale net pri⁃ mary productivity[J]. Remote Sensing of Environment, 2005, 96 (2): 246-255.
|
[9] |
高清竹, 万运帆, 李玉娥, 等. 基于 CASA 模型的藏北地区草地 植被净第一性生产力及其时空格局[J]. 应用生态学报, 2007, 18(11): 2526-2532. [GAO Qingzhu, WAN Yunfan, LI Yue, et al. Grassland net primary productivity and its spatial temporal distri⁃ bution in northern Tibet: A study with CASA model[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2526-2532. ]
|
[10] |
童志辉, 熊助国, 孙睿, 等. 利用多源数据估算黑河流域总初级 生 产 力 [J]. 干 旱 区 地 理, 2020, 43(2): 440- 448. [TONG Zhihui, XIONG Zhuguo, SHUN Rui, et al. Estimating gross primary pro⁃ duction in the Heihe River Basin from multiple data sources[J]. Ar⁃ id Land Geography, 2020, 43(2): 440-448. ]
|
[11] |
PARTON W J, SCURLOCK J M O, OJIMA D S, et al. Observa⁃ tions and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochemical Cy⁃ cles, 1993, 7(4): 785-809.
|
[12] |
LIU J, CHEN J M, CIHLAR J, et al. A process-based boreal eco⁃ system productivity simulator using remote sensing inputs[J]. Rem Sens Environ, 1997, 62(2): 158-175.
|
[13] |
冯险峰, 孙庆龄, 林斌. 区域及全球尺度的 NPP 过程模型和 NPP 对 全 球 变 化 的 响 应 [J]. 生 态 环 境 学 报, 2014, 23(3): 496- 503. [FENG Xianfeng, Sun Qingling, Lin Bin. NPP process models ap⁃ plied in regional and global scales and responses of NPP to the global chenge[J]. Ecology and Environmental Sciences, 2014, 23 (3): 496-503. ]
|
[14] |
冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证 据[J]. 科学通报, 1998, 43(6): 633. [FENG Song, TANG Maocang, WANG Dongmei. New evidence for the Qinghai- Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China[J]. Chi⁃ nese Science Bulletin, 1998, 43(6): 633. ]
|
[15] |
姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题 [J]. 科 学 通 报, 2000, 45(1): 98- 106. [YAO Tandong, LIU Xia⁃ odong, WANG Ninglian. Amplitude of climatic changes in Qing⁃ hai-Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(1): 98- 106. ]
|
[16] |
许洁, 陈惠玲, 商沙沙, 等. 2000—2014 年青藏高原植被净初级 生产力时空变化及对气候变化的响应[J]. 干旱区地理, 2020, 43(3): 592- 601. [XU Jie, CHEN Huiling, SHANG Shasha, et al. Response of net primary productivity of Tibetan Plateau vegetation [J]. Arid Land Geography, 2020, 43(3): 592-601. ]
|
[17] |
WHITE M A, THORNTON P E, RUNNING S W, et al. Parameter⁃ ization and sensitivity analysis of the BIOME-BGC terrestrial eco⁃ system model: Net primary production controls[J]. Earth Interac⁃ tions, 2000, 4(3): 1-84.
|
[18] |
REEVES M C, MORENO A L, BAGNE K E, et al. Estimating cli⁃ mate change effects on net primary production of rangelands in the United States[J]. Climatic Change, 2014, 126(3-4): 429-442.
|
[19] |
COLLATZG J, BALL J T, GRIVET C, et al. Physiological and en⁃ vironmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer [J]. Agri Forest Met, 1991, 54(2-4): 107-136.
|
[20] |
LOBELL D B, HICKE J A, ASNER G P, et al. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982—1998[J]. Global Change Biology, 2010, 8(8): 722-735.
|
[21] |
除多, 德吉央宗, 普布次仁, 等. 西藏藏北高原典型植被生长对 气候要素变化的响应[J]. 应用气象学报, 2007, 18(6): 832-839. [CHU Duo, DEJI Yangzong, PUBU Ciren, et al. The response of typical vegetation growth to climate conditions in north Tibetan Plateau[J]. Journal of Applied Meteorological Science, 2007, 18 (6): 832-839. ]
|
[22] |
张镱锂, 丁明军, 张玮, 等. 三江源地区植被指数下降趋势的空 间 特 征 及 其 地 理 背 景 [J]. 地 理 研 究, 2007, 26(3): 500- 507. [ZHANG Yili, DING Mingjun, ZHANG Wei, et al. Spatial charac⁃ teristic of vegetation change in the source regions of the Yangtze River, Yellow River and Lancang River in China[J]. Geographical Research, 2007, 26(3): 500-507. ]
|
[23] |
赵俊芳, 延晓冬, 贾根锁. 东北森林净第一性生产力与碳收支对 气 候 变 化 的 响 应 [J]. 生 态 学 报, 2008, 28(1): 92- 102. [ZHAO Junfang, YAN Xiaoddong, JIA Gensuo. Simulating the responses of forest net primary productivity and carbon budget to climate change in northeast China[J]. Acta Ecologica Sinica, 2008, 28(1) : 92-102. ]
|
[24] |
LUYSSAERT S, INGLIMA I, JUNG M, et al. CO2 balance of bore⁃ al, temperate, and tropical forests derived from a global database [J]. Glob Change Biol, 2007, 13(12): 2509-2537.
|
[25] |
裴志永, 周才平, 欧阳华, 等. 青藏高原高寒草原区域碳估测[J]. 地理研究, 2010, 29(1): 102-110. [PEI Zhiyong, ZHOU Caiping, OUYANG Hua, et al. A carbon budget of alpine steppe area in the Tibetan Plateau[J]. Geographical Research, 2010, 29(1): 102-110. ]
|
[26] |
DILLAWAY D N, KRUGER E L. Trends in seedling growth and carbon-use efficiency vary among broadleaf tree species along a latitudinal transect in eastern North America[J]. Global Change Bi⁃ ology, 2014, 20(3): 908-922.
|
[27] |
袁旻舒, 李明旭, 程红岩, 等. 基于 CMIP5 模型结果的中国陆地 生态系统未来碳利用效率变化趋势分析[J]. 中国科学院大学 学报, 2017, 34(4): 452-461. [YUAN Minshu, LI Mingxu, CHENG Hongyan, et al. Future trends in carbon use efficiency for Chinese terrestrial ecosystem based on CMIPS model results[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(4): 452- 461. ]
|
[28] |
陈光水, 杨玉盛, 高人, 等. 杉木林年龄序列地下碳分配变化[J]. 植 物 生 态 学 报, 2008, 32(6): 1285-1293. [CHEN Guangshui, YANG Yusheng, GAO Ren, et al. Changes in belowground carbon al⁃ location in a Chinese fir chrono sequence in Fujian Province, China [J]. Chinese Journal of Plant Ecology, 2008, 32(6): 1285-1293. ]
|
[29] |
安相, 陈云明, 唐亚坤. 东亚森林、草地碳利用效率及碳通量空 间变化的影响因素分析[J]. 水土保持研究, 2017, 24(5): 79-87. [AN Xiang, CHEN Yunming, TANG Yakun. Factors affecting the spatial variation of carbon use efficiency and carbon fluxes in East Asian forest and grassland[J]. Research of Soil and Water Conser⁃ vation, 2017, 24(5): 79-87. ]
|