干旱区地理 ›› 2025, Vol. 48 ›› Issue (1): 31-42.doi: 10.12118/j.issn.1000-6060.2024.075 cstr: 32274.14.ALG2024075
艾力克木·司拉音1(), 安外尔·艾则孜2, 塔吉古丽·喀斯木2, 史智文2, 胥俊宇2,3, 则外日古丽·克比尔2,3, 玉米提·哈力克3, 艾里西尔·库尔班2()
收稿日期:
2024-02-02
修回日期:
2024-03-16
出版日期:
2025-01-25
发布日期:
2025-01-21
通讯作者:
艾里西尔·库尔班(1966-),男,博士,研究员,主要从事遥感与地理信息系统应用研究. E-mail: alishir@ms.xjb.ac.cn作者简介:
艾力克木·司拉音(1982-),男,硕士研究生,主要从事干旱区植被及生态遥感研究. E-mail: alkam0403@sina.com
基金资助:
Ailikemu SILAYIN1(), Anwar EZIZ2, Tajiguli KASIMU2, SHI Zhiwen2, XU Junyu2,3, Ziwargul KIBIR2,3, Umut HALIK3, Alishir KURBAN2()
Received:
2024-02-02
Revised:
2024-03-16
Published:
2025-01-25
Online:
2025-01-21
摘要: 环境质量指数(EQI)是由气候/气象、水资源、土壤、地形地貌和生物多样性等方面的环境要素组成的,能够快速全方位定量评估自然环境总体质量的工具。基于遥感、实地监测、文献等多源数据,用熵值法、主成分分析和层次分析等方法计算EQI,对2000、2010年和2020年塔里木河下游自然环境质量进行综合评价。结果表明:(1) 在生态输水作用下,2000—2020年塔里木河下游自然环境质量有显著改善。其中,EQI相对较高的区域主要分布在近河道两岸和湖盆周边。(2) 2000—2010年环境质量改善(改善面积为15620 km2)较2010—2020年(改善面积为13831 km2)明显。(3) 环境质量较差及以下(EQI<0.4)和较好(EQI≥0.8)等级的EQI的增加最为明显,而环境质量差(0.4≤EQI<0.5)和良好(0.6≤EQI<0.8)等级的EQI增加不显著。生态输水量的增加显著减少了EQI偏低和中等区域面积,促进了EQI偏高的区域面积增加,说明总体上生态输水改善了研究区环境质量。
艾力克木·司拉音, 安外尔·艾则孜, 塔吉古丽·喀斯木, 史智文, 胥俊宇, 则外日古丽·克比尔, 玉米提·哈力克, 艾里西尔·库尔班. 基于环境质量指数的塔里木河下游生态输水效益评估[J]. 干旱区地理, 2025, 48(1): 31-42.
Ailikemu SILAYIN, Anwar EZIZ, Tajiguli KASIMU, SHI Zhiwen, XU Junyu, Ziwargul KIBIR, Umut HALIK, Alishir KURBAN. Evaluation of the ecological water conveyance benefits in the lower reaches of Tarim River based on environmental quality index[J]. Arid Land Geography, 2025, 48(1): 31-42.
表1
指标体系和数据来源"
自然环境要素 | 指标 | 数据来源 | 年份 | 指标属性 | 空间分辨率/m |
---|---|---|---|---|---|
气候/气象 | 地表温度 | 资源环境科学数据平台 (www.resdc.cn/DOI/DOI.aspx?DOIID=98) | 2000,2010,2020 | 负向 | 1000 |
地表温度标准差 | 用3 km×3 km的滑动窗口来计算标准差 | 2000,2010,2020 | 负向 | 1000 | |
土壤 | 土壤湿度 | PIE ENGINE网站 ( | 2002,2010,2018 | 正向 | 5400 |
地表湿度指数 | 基于Landsat 7/8 OLI计算 | 2000,2010,2020 | 正向 | 30 | |
土壤全氮 | 土地科学数据中心( | 2000,2010,2018 | 正向 | 90 | |
土壤全磷 | 土地科学数据中心( | 2000,2010,2018 | 正向 | 90 | |
土壤有机碳 | 土地科学数据中心( | 2000,2010,2018 | 正向 | 90 | |
土壤pH | 土地科学数据中心( | 2000,2010,2018 | 正向 | 90 | |
沙漠化 | 裸地面积 | 资源环境科学数据平台 (www.resdc.cn/DOI/DOI.aspx?DOIID=54) | 2000,2010,2020 | 负向 | 30 |
盐渍化地 | 土壤指数 | 基于Landsat 8 OLI计算 | 2000,2010,2020 | 负向 | 30 |
生物多样性 | 叶面积指数 | Earth Data网站 (ladsweb.modaps.eosdis.nasa.gov) | 2000,2010,2020 | 正向 | 1000 |
归一化植被指数,增强植被 指数,土壤调节植被指数 | 基于Landsat 7/8 OLI计算 | 2000,2010,2020 | 正向 | 30 | |
物种丰富度 | 以往研究[ | 2000,2010,2020 | 正向 | 30 | |
Simpson多样性指数 | 以往研究[ | 2000,2010,2020 | 正向 | 30 | |
Shannon-Weiner多样性指数 | 以往研究[ | 2000,2010,2020 | 正向 | 30 | |
水资源 | 水域面积 | Global Surface Water网站 ( | 2000,2010,2020 | 正向 | 30 |
地下水埋深 | 以往研究[ | 2000,2010,2020 | 负向 | 30 |
表2
塔里木河下游环境质量变化转移矩阵"
环境质量等级 | 2000年 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
差 | 很差 | 较差 | 良好 | 一般 | |||||||
2010年 | 差 | 709.80 | 42.09 | 142.22 | 18.82 | 282.34 | |||||
很差 | 0.49 | 1470.10 | 93.02 | - | - | ||||||
较差 | 199.70 | 192.85 | 459.94 | - | 5.11 | ||||||
较好 | - | 0.14 | - | 79.44 | 0.01 | ||||||
良好 | 41.52 | 8.17 | 49.85 | 219.12 | 138.99 | ||||||
一般 | 238.40 | 15.72 | 57.02 | 31.74 | 345.59 | ||||||
环境质量等级 | 2010年 | ||||||||||
差 | 很差 | 较差 | 较好 | 良好 | 一般 | ||||||
2020年 | 差 | 349.66 | 39.24 | 170.70 | - | 10.31 | 107.36 | ||||
很差 | 290.14 | 1345.17 | 295.78 | - | 0.09 | 49.17 | |||||
很好 | 0.07 | - | - | 40.29 | 7.66 | 0.06 | |||||
较差 | 106.51 | 142.47 | 235.03 | - | 3.22 | 30.92 | |||||
较好 | 14.18 | - | 6.18 | 31.18 | 72.73 | 5.07 | |||||
良好 | 141.31 | 17.85 | 76.21 | 8.08 | 313.84 | 213.88 | |||||
一般 | 292.68 | 18.50 | 73.57 | - | 49.42 | 281.98 |
[1] | 刘时银, 丁永建, 张勇, 等. 塔里木河流域冰川变化及其对水资源影响[J]. 地理学报, 2006, 61(5): 482-490. |
[Liu Shiyin, Ding Yongjian, Zhang Yong, et al. Impact of the glacial change on water resources in the Tarim River Basin[J]. Acta Geographica Sinica, 2006, 61(5): 482-490.]
doi: 10.11821/xb200605004 |
|
[2] | 张沛. 塔里木河流域社会-生态-水资源系统耦合研究[D]. 北京: 中国水利水电科学研究院, 2019. |
[Zhang Pei. Research on the coupling system of society, ecoenvironment and water in Tarim River Basin[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2019.] | |
[3] | Huang X. Culture on the Silk Road[M]. Hangzhou: Zhejiang People’s Publisher, 1995. |
[4] | 张静. 旱区地下水位变化引起的表生生态效应及其评价——以天山北麓中段为例[D]. 西安: 长安大学, 2011. |
[Zhang Jing. Study on supergene ecological effect and evaluate excited by groundwater level: Take the middle of the northern piedmont of Tianshan as an example[D]. Xi’an: Chang’an University, 2011.] | |
[5] | 胡明芳, 田长彦, 赵振勇, 等. 新疆盐碱地成因及改良措施研究进展[J]. 西北农林科技大学学报(自然科学版), 2012, 40(10): 111-117. |
[Hu Mingfang, Tian Changyan, Zhao Zhenyong, et al. Salinization causes and research progress of technologies improving saline-alkali soil in Xinjiang[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(10): 111-117.] | |
[6] | 吴彬, 杜明亮, 穆振侠, 等. 1956—2016年新疆平原区地下水资源量变化及其影响因素分析[J]. 水科学进展, 2021, 32(5): 659-669. |
[Wu Bin, Du Mingliang, Mu Zhenxia, et al. Analysis of changes in groundwater resources and influencing factors in Xinjiang plain area from 1956 to 2016[J]. Advances in Water Science, 2021, 32(5): 659-669.] | |
[7] |
姚俊强, 陈静, 迪丽努尔·托列吾别克, 等. 新疆气候水文变化趋势及面临问题思考[J]. 冰川冻土, 2021, 43(5): 1498-1511.
doi: 10.7522/j.issn.1000-0240.2021.0101 |
[Yao Junqiang, Chen Jing, Tuoliwubieke Dilinuer, et al. Trend of climate and hydrology change in Xinjiang and its problems thinking[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1498-1511.]
doi: 10.7522/j.issn.1000-0240.2021.0101 |
|
[8] | 卢琦, 吴波. 中国荒漠化灾害评估及其经济价值核算[J]. 中国人口·资源与环境, 2002, 12(2): 31-35. |
[Lu Qi, Wu Bo. Assessment of desertification disasters and economic value accounting in China[J]. China Population, Resources and Environment, 2002, 12(2): 31-35.] | |
[9] | 袁榴艳, 杨改河. 新疆绿洲可持续发展评估研究[J]. 西北农林科技大学学报(自然科学版), 2004, 32(6): 54-58. |
[Yuan Liuyan, Yang Gaihe. Study on the assessment of sustainable development of the oasis in Xinjiang Province[J]. Journal of Northwest A & F University (Natural Science Edition), 2004, 32(6): 54-58.] | |
[10] |
Bao Y S, Cheng L L, Bao Y F, et al. Desertification: China provides a solution to a global challenge[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 402-413.
doi: 10.15302/J-FASE-2017187 |
[11] | Chen Y N, Chen Y, Xu C, et al. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China[J]. Hydrological Processes, 2010, 24(2): 170-177. |
[12] |
王振, 李均力, 张久丹, 等. 输水漫溢对塔里木河中游胡杨林恢复的影响[J]. 干旱区地理, 2023, 46(1): 94-102.
doi: 10.12118/j.issn.1000-6060.2022.213 |
[Wang Zhen, Li Junli, Zhang Jiudan, et al. Influences of ecological water conveyance on Populus euphratica forest restoration in the middle reaches of Tarim River[J]. Arid Land Geography, 2023, 46(1): 94-102.]
doi: 10.12118/j.issn.1000-6060.2022.213 |
|
[13] | 陈亚宁, 李卫红, 徐海量, 等. 塔里木河下游地下水位对植被的影响[J]. 地理学报, 2003, 58(4): 542-549. |
[Chen Yaning, Li Weihong, Xu Hailiang, et al. The influence of groundwater on vegetation in the lower reaches of Tarim River, China[J]. Acta Geographica Sinica, 2003, 58(4), 542-549.]
doi: 10.11821/xb200304008 |
|
[14] | Zhao T, Yang Y, Mu X H. Monitoring dynamic changes of vegetation cover in the Tarim River Basin based with landsat imagery and Google Earth Engine[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2021: 4834-4837. |
[15] | 买尔当·克依木, 玉米提·哈力克, Florian B. 输水影响下胡杨胸径生长量时空变化[J]. 森林与环境学报, 2016, 36(2): 148-154. |
[Keyimu Maierdang, Halik Umut, Florian B, et al. Spatial-temporal change of DBH of Populus euphratica under artificial water conveyances[J]. Journal of Forest and Environment, 2016, 36(2): 148-154.] | |
[16] | 袁祯燕, 杜东伟. 基于EOS-MODIS的塔里木河下游应急输水以来的植被响应研究[J]. 干旱区资源与环境, 2008, 22(9): 154-158. |
[Yuan Zhenyan, Du Dongwei. Studies on vegetation response to emergency water transportation to Tarim River based on EOS-MODIS[J]. Journal of Arid Land Resources and Environment, 2008, 22(9): 154-158.] | |
[17] | 张久丹, 李均力, 包安明, 等. 2013—2020 年塔里木河流域胡杨林生态恢复成效评估[J]. 干旱区地理, 2023, 45(6): 1824-1835. |
[Zhang Jiudan, Li Junli, Bao Anming, et al. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013—2020[J]. Arid Land Geography, 2023, 45(6): 1824-1835.] | |
[18] | 陈超群, 吴煜, 王健, 等. 生态输水前后塔里木河干流生态系统服务价值的变化过程[J]. 中国农村水利水电, 2017(9): 100-103, 8. |
[Chen Chaoqun, Wu Yu, Wang Jian, et al. An analysis of the ecosystem service value in the mainstream of the Tarim River before and after the ecological water conveyance[J]. China Rural Water and Hydropower, 2017(9): 100-103, 8.] | |
[19] |
王希义, 彭淑贞, 徐海量, 等. 大型输水工程的生态效益与社会经济效益评价——以塔里木河下游为例[J]. 地理科学, 2020, 40(2): 308-314.
doi: 10.13249/j.cnki.sgs.2020.02.016 |
[Wang Xiyi, Peng Shuzhen, Xu Hailiang, et al. Evaluation of ecological and social-economic benefits of large water conveyance projects: A case study on the lower reaches of the Tarim River[J]. Scientia Geographica Sinica, 2020, 40(2): 308-314.]
doi: 10.13249/j.cnki.sgs.2020.02.016 |
|
[20] | Peche R, Rodríguez E. Development of environmental quality indexes based on fuzzy logic: A case study[J]. Ecological Indicators, 2012, 23: 555-565. |
[21] | Mahmoudzadeh H, Abedini A, Aram F, et al. Evaluating urban environmental quality using multi criteria decision making[J]. Heliyon, 2024, 10(3): e24921, doi: 10.1016/j.heliyon.2024.e24921. |
[22] | Jiao A Y, Wang W Q, Ling H B, et al. Effect evaluation of ecological water conveyance in Tarim River Basin, China[J]. Frontiers in Environnemental Science, 2022, 10: 1019695, doi: 10.3389/fenvs.2022.1019695. |
[23] | Zhang X M, Zhang X L, Zhang Z H, et al. Measures, methods and cases of river ecological restoration[C]// OP Conference Series: Earth and Environmental Science. The International Workshop on Green Energy, Environment and Sustainable Development. Weihai, China: Purpose-Led Publishing, 2020. |
[24] | Ling H B, Guo B, Zhang G P, et al. Evaluation of the ecological protective effect of the “large basin” comprehensive management system in the Tarim River Basin, China[J]. Science of the Total Environment, 2019, 650: 1696-706. |
[25] | Wang Q X, Chen X K, Peng W Q, et al. Changes in runoff volumes of inland terminal lake: A case study of Lake Daihai[J]. Earth and Space Science, 2021, 8(11): e2021EA001954, doi: 10.1029/2021EA001954. |
[26] | 刘桂林, 艾里西尔·库尔班, 玉米提·哈力克, 等. 基于变化轨迹探测的植被景观格局动态分析——以塔里木河下游生态输水区域为例[J]. 中国沙漠, 2012, 32(5): 1472-1478. |
[Liu Guilin, Kurban Alishir, Halik Umut, et al. Dynamic analysis of vegetation landscape pattern based on change trajectory detection: Taking the ecological water conveyance area downstream of Tarim River as an example[J]. Journal of Desert Research, 2012, 32(5): 1472-1478.] | |
[27] | 阿布都米吉提·阿布力克木, 阿里木江·卡斯木, 艾里西尔·库尔班, 等. 近40年台特玛-康拉克湖泊群水域变化遥感监测[J]. 湖泊科学, 2014, 26(1): 46-54. |
[Ablekim Abdimijit, Kasimu Alimujiang, Kurban Alishir, et al. Monitoring the water area changes in Tetima-Kanglayka lakes region over the past four decades by remotely sensed data[J]. Journal of Lake Sciences, 2014, 26(1): 46-54.] | |
[28] | 樊自立, 徐海量, 傅荩仪, 等. 台特玛湖湿地保护研究[J]. 第四纪研究, 2013, 33(3): 594-602. |
[Fan Zili, Xu Hailiang, Fu Jinyi, et al. Study on protection of wetland of Taitema Lake[J]. Quaternary Sciences, 2013, 33(3): 594-602.] | |
[29] | Aishan T, Halik U, Kurban A, et al. Eco-morphological response of floodplain forests (Populus euphratica Oliv.) to water diversion in the lower Tarim River, northwest China[J]. Environmental Earth Sciences, 2015, 73(2): 533-545. |
[30] | Zay C. EP IPBES 联合国环境规划署[R]. 北京: 联合国环境规划署, 2012. |
[Zay C. EP IPBES United Nations environment programme[R]. Beijing: UNEP, 2012.] | |
[31] | 徐至远, 邵丽盼·卡尔江, 林涛, 等. 地下水位对生态输水的响应过程模拟[J]. 水文, 2022, 42(5): 70-75. |
[Xu Zhiyuan, Kaerjiang Shaolipan, Lin Tao, et al. Simulation of response of groundwater level to ecological water conveyance[J]. Journal of China Hydrology, 2022, 42(5): 70-75.] | |
[32] | 阿德·阿布拉. 塔里木河下游地下水恢复需水量研究[J]. 陕西水利, 2022(6): 37-39. |
[Abula Ade. Research on the water demand for groundwater restoration in the lower reaches of the Tarim River[J]. Shaanxi Water Resources, 2022(6): 37-39.] | |
[33] | 陈龙. 塔里木河下游生态输水后地下水埋深趋势规律分析[J]. 黑龙江水利科技, 2022, 50(5): 72-74, 113. |
[Chen Long. Analysis of the trend of groundwater depth after ecological water transfer in the lower reaches of the Tarim River[J]. Heilongjiang Hydraulic Science and Technology, 2022, 50(5): 72-74, 113.] | |
[34] | 阿依姆古丽·赛麦提, 吐尔逊·哈斯木, 郭冬. 近20 a来塔里木河下游下段典型剖面地下水位对生态输水响应分析[J]. 内蒙古农业大学学报(自然科学版), 2023, 44(1): 43-51. |
[Saimati Ayimuguli, Kasim Tursun, Guo Dong. Analysis of the response of groundwater level to ecological water transport in typical profiles in the lower reaches of the Tarim River in recent 20 years[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2023, 44(1): 43-51.] | |
[35] | 董宗炜, 徐至远, 张鹏. 生态输水对台特玛湖面积和植被的影响[J]. 水利规划与设计, 2022(3): 64-66, 88. |
[Dong Zongwei, Xu Zhiyuan, Zhang Peng. The impact of ecological water supply on the area and vegetation of Lake Taitema[J]. Water Resources Planning and Design, 2022(3): 64-66, 88.] | |
[36] |
希丽娜依·多来提, 阿里木江·卡斯木, 如克亚·热合曼, 等. 基于四种水体指数的艾比湖水面提取及时空变化分析[J]. 长江科学院院报, 2022, 39(10): 134-140.
doi: 10.11988/ckyyb.20210634 |
[Duolaiti Xilinayi, Kasim Alim, Reheman Rukeya, et al. Water body extraction of Ebinur Lake based on four water indexes and analysis of spatial-temporal changes[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(10): 134-140.] | |
[37] | 白涛, 姬宏伟, 邓铭江, 等. 注重荒漠区胡杨林生态保护与修复的汊渗轮灌研究[J]. 水利学报, 2022, 53(1): 31-42. |
[Bai Tao, Ji Hongwei, Deng Mingjiang, et al. Study on the ditch rotation irrigation for ecological protection and restoration of Populus euphratica forests in the desert area[J]. Journal of Hydraulic Engineering, 2022, 53(1): 31-42.] | |
[38] | Shan W, Jin X B, Ren J, et al. Ecological environment quality assessment based on remote sensing data for land consolidation[J]. Journal of Cleaner Production, 2019, 239: 118126, doi: 10.1016/j.jclepro.2019.118126. |
[39] | Zeng Y N, Feng Z D, Xiang N P. Assessment of soil moisture using Landsat ETM+temperature/vegetation index in semiarid environment[C]// Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium. Alaska: IEEE, 2004: 4306-4309. |
[40] | Kappal S. Data normalization using median absolute deviation MMAD based Z-score for robust predictions vs. min-max normalization[J]. London Journal of Research in Science: Natural and Formal, 2019, 19(4): 39-44. |
[41] | Gongnet E E, Agbangba C E, Affossogbe T S A, et al. Spatial prediction of soil organic matter in Adingnigon (Benin) using Bayesian maximum entropy (BME)[J]. African Journal of Applied Statistics, 2022, 9(1): 1279-1295. |
[42] | Abuelgasim A, Ammad R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data[J]. Remote Sensing Applications: Society and Environment, 2019, 13: 415-425. |
[43] | Wang Y, Zhang S, Zhen H, et al. Spatiotemporal evolution characteristics in ecosystem service values based on land use/cover change in the Tarim River Basin, China[J]. Sustainability, 2020, 12(18): 7759, doi: 10.3390/su12187759. |
[44] | Dou X, Ma X F, Huo T C, et al. Assessment of the environmental effects of ecological water conveyance over 31 years for a terminal lake in Central Asia[J]. Catena, 2022, 208: 105725, doi: 10.1016/j.catena.2021.105725. |
[45] | Wang X Y, Peng S Z, Ling H B, et al. Do ecosystem service value increase and environmental quality improve due to large-scale ecological water conveyance in an arid region of China?[J]. Sustainability, 2019, 11(23): 6586, doi: 10.3390/su11236586. |
[46] | Jiao A Y, Wang Z K, Deng X Y, et al. Eco-hydrological response of water conveyance in the mainstream of the Tarim River, China[J]. Water, 2022, 14(17): 2622, doi: 10.3390/w14172622. |
[47] | Chen Y N, Chen Y P, Zhu C G, et al. Ecohydrological effects of water conveyance in a disconnected river in an arid inland river basin[J]. Scientific Reports, 2022, 12(1): 1-11. |
[48] | Boulton C A, Lenton T M, Boers N. Pronounced loss of Amazon rainforest resilience since the early 2000s[J]. Nature Climate Change, 2022, 12(3): 271-278. |
[49] | Lawrence D, Coe M, Walker W, et al. The unseen effects of deforestation: Biophysical effects on climate[J]. Frontiers in Forests and Global Change, 2022, 5: 756115, doi: 10.3389/ffgc.2022.756115. |
[50] | Kreier F. Tropical forests have big climate benefits beyond carbon storage[J]. Nature, 2022, 1: 35365819, doi: 10.1038/d41586-022-00934-6. |
[51] | Lang P, Ahlborn J, Schäfer P, et al. Growth and water use of Populus euphratica trees and stands with different water supply along the Tarim River, NW China[J]. Forest Ecology and Management, 2016, 380: 139-148. |
[52] |
高庆, 艾里西尔·库尔班, 肖昊. 塔里木河下游区域植被时空变化[J]. 自然资源学报, 2019, 34(3): 624-632.
doi: 10.31497/zrzyxb.20190315 |
[Gao Qing, Kurban Alishir, Xiao Hao. Spatiotemporal variation of vegetation in the lower reaches of Tarim River[J]. Journal of Natural Resources, 2019, 34(3): 624-632.]
doi: 10.31497/zrzyxb.20190315 |
|
[53] | Cui H H, Zhang G H, Wang Q, et al. Study on index of groundwater ecological function crisis classification and early warning in northwest China[J]. Water, 2022, 14(12): 1911, doi: 10.3390/w14121911. |
[54] | Yu X, Lei J Q, Gao X. An over review of desertification in Xinjiang, northwest China[J]. Journal of Arid Land, 2022, 14(11): 1-15. |
[55] | Yin X W, Feng Q, Li Y, et al. An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems[J]. Science of the Total Environment, 2022, 806: 150599, doi: 10. 1016/j.scitotenv.2021.150599. |
[56] | Li W W, Jia S N, He W, et al. Analysis of the consequences of land-use changes and soil types on organic carbon storage in the Tarim River Basin from 2000 to 2020[J]. Agriculture, Ecosystems & Environment, 2022, 327: 107824, doi: 10.1016/j.agee.2021.107824. |
[57] | Zhou S H, Liu D D, Zhu M Y, et al. Temporal and spatial variation of land surface temperature and its driving factors in Zhengzhou City in China from 2005 to 2020[J]. Remote Sensing, 2022, 14(17): 4281, doi: 10.3390/rs14174281. |
[58] | Jiang B, Larsen L, Deal B, et al. A dose-response curve describing the relationship between tree cover density and landscape preference[J]. Landscape and Urban Planning, 2015, 139: 16-25. |
[59] |
Li J, Yu B, Zhao C, et al. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability[J]. Tree Physiology, 2013, 33(1): 57-68.
doi: 10.1093/treephys/tps120 pmid: 23243028 |
[60] | 艾克热木·阿布拉, 阿布都米吉提·阿布力克木, 安外尔·艾则孜, 等. 塔里木河和车尔臣河对台特玛-康拉克湖水域面积变化影响分析[J]. 干旱区资源与环境, 2023, 3(1): 52-57. |
[Abula Aikeremu, Ablekim Abdimilit, Eziz Anwar, et al. Influence of Tarim River and Qarqan River on water area change of Tetima-Kanglayka Lakes[J]. Journal of Arid Land Resources and Environment, 2023, 3(1): 52-57.] | |
[61] | Xu H L, Ye M, Li J M. The water transfer effects on agricultural development in the lower Tarim River, Xinjiang of China[J]. Agricultural Water Management, 2008, 95(1): 59-68. |
[1] | 蒋晓晴, 郝帅, 叶茂, 何定学, 张子涵, 李国华. 塔里木河下游不同地下水埋深下胡杨水分利用来源研究[J]. 干旱区地理, 2024, 47(12): 2017-2029. |
[2] | 王世明,范敬龙,赵英,张涛涛,李生宇. 咸水灌溉条件下塔里木河下游沙漠土壤水盐运移数值模拟[J]. 干旱区地理, 2021, 44(4): 1104-1113. |
[3] | 王万瑞,艾克热木·阿布拉,陈亚宁,朱成刚,陈亚鹏. 塔里木河下游生态输水对地下水补给量研究[J]. 干旱区地理, 2021, 44(3): 670-680. |
[4] | 狄振华,谢正辉,陈亚宁. 塔里木河下游长期输水条件下河流剖面地下水埋深估算[J]. 干旱区地理, 2021, 44(3): 659-669. |
[5] | 付爱红,程勇,李卫红,朱成刚,陈亚鹏. 塔里木河下游生态输水对荒漠河岸林生态恢复力的影响[J]. 干旱区地理, 2021, 44(3): 620-628. |
[6] | 陈亚鹏,周洪华,朱成刚. 塔里木河下游胡杨水分传输过程研究综述[J]. 干旱区地理, 2021, 44(3): 612-619. |
[7] | 李玉朋,陈亚宁,叶朝霞,王非,孙帆,秦景秀. 塔里木河下游输水20 a的生态响应[J]. 干旱区地理, 2021, 44(3): 700-707. |
[8] | 王川,刘永昌,李稚. 塔里木河下游生态输水对植被碳源/汇空间格局的影响[J]. 干旱区地理, 2021, 44(3): 729-738. |
[9] | 童志辉, 熊助国, 孙睿, 刘向铜, 王东东. 利用多源数据估算黑河流域总初级生产力 [J]. 干旱区地理, 2020, 43(2): 440-448. |
[10] | 熊俊楠, 李伟, 刘志奇, 程维明, 范春捆, 张昊. 基于多源数据的西藏东南部历史干旱监测与分析[J]. 干旱区地理, 2019, 42(4): 735-744. |
[11] | 古力米热·哈那提, 王光焰, 张音, 刘迁迁, 苏里坦. 干旱区间歇性生态输水对地下水位与植被的影响机理研究[J]. 干旱区地理, 2018, 41(4): 726-733. |
[12] | 李丽君, 张小清, 陈长清, 申梦阳. 近20 a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018, 41(2): 238-247. |
[13] | 刘迁迁, 古力米热·哈那提, 苏里坦, 张音. 塔里木河下游河岸带地下水埋深对生态输水的响应过程[J]. 干旱区地理, 2017, 40(5): 979-986. |
[14] | 鲁莎莎, 郭丽婷, 陈英红, 陈妮, 张珉珊, 关兴良. 北京市森林生态安全情景模拟与优化调控研究[J]. 干旱区地理, 2017, 40(4): 787-794. |
[15] | 苏里坦, 古力米热·哈那提, 刘迁迁. 塔里木河下游胡杨林根系吸水模型[J]. 干旱区地理, 2017, 40(1): 102-107. |
|