[1] |
王瑾杰, 丁建丽, 张成, 等. 基于SCS模型的新疆博尔塔拉河流域径流模拟[J]. 农业工程学报, 2016, 32(7): 129-135.
|
|
[ Wang Jinjie, Ding Jianli, Zhang Cheng, et al. Runoff simulation based on SCS mode in Bortala River Basin in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7): 129-135. ]
|
[2] |
王颖慧, 丁建丽, 李晓航, 等. 伊犁河流域土地利用/覆被变化对生态系统服务价值的影响——基于强度分析模型[J]. 生态学报, 2022, 42(8): 3106-3118.
|
|
[ Wang Yinghui, Ding Jianli, Li Xiaohang, et al. Impact of LUCC on ecosystem services values in the Yili River Basin based on an intensity analysis model[J]. Acta Ecologica Sinica, 2022, 42(8): 3106-3118. ]
|
[3] |
王瑾杰, 丁建丽, 张喆, 等. 干旱区降雨、融雪混合补给下的径流模拟研究——以博尔塔拉河上游流域为例[J]. 干旱区地理, 2016, 39(6): 1238-1246.
|
|
[ Wang Jinjie, Ding Jianli, Zhang Zhe, et al. Simulation of runoff of arid area with rainfall and snowmelt based on GF-1 satellite: A case of Bortala River[J]. Arid Land Geography, 2016, 39(6): 1238-1246. ]
|
[4] |
魏桢, 贾海峰, 姜其贵, 等. 再生水补水河道中流速对浮游藻类生长影响的模拟实验[J]. 环境工程学报, 2017, 11(12): 6540-6546.
|
|
[ Wei Zhen, Jia Haifeng, Jiang Qigui, et al. Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6540-6546. ]
|
[5] |
Ruiz J, Macías D, Peters F. Turbulence increases the average settling velocity of phytoplankton cells[J]. Proceedings of the National Academy of Sciences, 2004, 101(51): 17720-17724.
doi: 10.1073/pnas.0401539101
|
[6] |
陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8.
|
|
[ Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8. ]
|
[7] |
李肖杨, 朱成刚, 马玉其, 等. 新疆孔雀河流域生态基流与天然植被需水量研究[J]. 干旱区地理, 2021, 44(2): 337-345.
|
|
[ Li Xiaoyang, Zhu Chenggang, Ma Yuqi, et al. Ecological baseflow and natural vegetation water requirement of Konqi River Basin, Xinjiang[J]. Arid Land Geography, 2021, 44(2): 337-345. ]
|
[8] |
Smith L C, Isacks B L, Forster R R, et al. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: First results[J]. Water Resources Research, 1995, 31(5): 1325-1329.
doi: 10.1029/95WR00145
|
[9] |
Brakenridge G R, Tracy B T, Knox J C. Orbital SAR remote sensing of a river flood wave[J]. International Journal of Remote Sensing, 1998, 19(7): 1439-1445.
doi: 10.1080/014311698215559
|
[10] |
Pierre B, Monnier J, Garambois P A, et al. On the assimilation of altimetric data in 1D Saint-Venant river flow models[J]. Advances in Water Resources, 2018, 119: 41-59.
doi: 10.1016/j.advwatres.2018.06.004
|
[11] |
Altenau E H, Pavelsky T M, Moller D, et al. Temporal variations in river water surface elevation and slope captured by AirSWOT[J]. Remote Sensing of Environment, 2019, 224: 304-316.
doi: 10.1016/j.rse.2019.02.002
|
[12] |
Wufu A, Yang S T, Chen Y, et al. Estimation of long-term river discharge and its changes in ungauged watersheds in Pamir Plateau[J]. Remote Sensing, 2021, 13(20): 4043, doi: 10.3390/rs13204043.
doi: 10.3390/rs13204043
|
[13] |
Wufu A, Chen Y, Yang S T, et al. Changes in glacial meltwater runoff and its response to climate change in the Tianshan region detected using unmanned aerial vehicles (UAVs) and satellite remote sensing[J]. Water, 2021, 13(13): 1753, doi: 10.3390/w13131753.
doi: 10.3390/w13131753
|
[14] |
Leopold L B, Maddock T. The hydraulic geometry of stream channels and some physiographic implications[M]. Washington: US Government Printing Office, 1953.
|
[15] |
Rhodes D D. The b-f-m diagram: Graphical representation and interpretation of at-a-station hydraulic geometry[J]. American Journal of Science, 1977, 277(1): 73-96.
doi: 10.2475/ajs.277.1.73
|
[16] |
Gleason C J, Smith L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[J]. Proceedings of the National Academy of Sciences, 2014, 111(13): 4788-4791.
doi: 10.1073/pnas.1317606111
|
[17] |
Bjerklie D M, Ayotte J D, Cahillane M J. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire[R]. Reston: US Geological Survey, 2015.
|
[18] |
Sichangi A W, Wang L, Yang K, et al. Estimating continental river basin discharges using multiple remote sensing data sets[J]. Remote Sensing of Environment, 2016, 179: 36-53.
doi: 10.1016/j.rse.2016.03.019
|
[19] |
李甲振, 郭新蕾, 巩同梁, 等. 无资料或少资料区河流流量监测与定量反演[J]. 水利学报, 2018, 49(11): 1420-1428.
|
|
[ Li Jiazhen, Guo Xinlei, Gong Tongliang, et al. A method estimating natural runoff in regions with none or less data[J]. Journal of Hydraulic Engineering, 2018, 49(11): 1420-1428. ]
|
[20] |
赵长森, 潘旭, 杨胜天, 等. 低空遥感无人机影像反演河道流量[J]. 地理学报, 2019, 74(7): 1392-1408.
doi: 10.11821/dlxb201907009
|
|
[ Zhao Changsen, Pan Xu, Yang Shengtian, et al. Measuring streamflow with low-altitude UAV imagery[J]. Acta Geographica Sinica, 2019, 74(7): 1392-1408. ]
doi: 10.11821/dlxb201907009
|
[21] |
杨胜天, 王鹏飞, 王娟, 等. 结合无人机航空摄影测量的河道流量估算[J]. 遥感学报, 2021, 25(6): 1284-1293.
|
|
[ Yang Shengtian, Wang Pengfei, Wang Juan, et al. River flow estimation method based on UAV aerial photogrammetry[J]. National Remote Sensing Bulletin, 2021, 25(6): 1284-1293. ]
|
[22] |
王鹏飞, 杨胜天, 王娟, 等. 星-机一体的水力几何形态流量估算方法[J]. 水利学报, 2020, 51(4): 492-504.
|
|
[ Wang Pengfei, Yang Shengtian, Wang Juan, et al. Discharge estimation with hydraulic geometry using unmanned aerial vehicle and remote sensing[J]. Journal of Hydraulic Engineering, 2020, 51(4): 492-504. ]
|
[23] |
徐文健. 基于卷积神经网络的高分辨率遥感图像上的水体识别技术[D]. 杭州: 浙江大学, 2018.
|
|
[ Xu Wenjian. Water recognition technology based on convolutional neural network for high resolution remote sensing images[D]. Hangzhou: Zhejiang University, 2018. ]
|
[24] |
杨知, 欧文浩, 刘晓燕, 等. 基于LinkNet卷积神经网络的高分辨率遥感影像水体信息提取[J]. 云南大学学报(自然科学版), 2019, 41(5): 932-938.
|
|
[ Yang Zhi, Ou Wenhao, Liu Xiaoyan, et al. Water information extraction for high resolution remote sensing image based on LinkNet convolutional neural network[J]. Journal of Yunnan University (Natural Sciences Edition), 2019, 41(5): 932-938. ]
|
[25] |
Gleason C J, Smith L C, Lee J. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters[J]. Water Resources Research, 2014, 50(12): 9604-9619.
doi: 10.1002/wrcr.v50.12
|
[26] |
Smith L C, Lsacks B L, Bloom A L, et al. Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungaged basins[J]. Water Resources Research, 1996, 32(7): 2021-2034.
doi: 10.1029/96WR00752
|
[27] |
Brakenridge R, Anderson E. Transboundary floods: Reducing risks through flood management[M]. Burlington: Springer, 2006: 1-12.
|
[28] |
Bjerklie D M, Moller D, Smith L C, et al. Estimating discharge in rivers using remotely sensed hydraulic information[J]. Journal of Hydrology, 2005, 309(1): 191-209.
doi: 10.1016/j.jhydrol.2004.11.022
|
[29] |
史宜梦, 刘希胜, 朱文彬, 等. 基于GEE云平台的黄河源区河流径流量遥感反演研究[J]. 遥感技术与应用, 2022, 37(1): 186-195.
|
|
[ Shi Yimeng, Liu Xisheng, Zhu Wenbin, et al. Research on inversion of river discharge in high mountain region based on GEE platform[J]. Remote Sensing Technology and Application, 2022, 37(1): 186-195. ]
|
[30] |
Huang Q, Long D, Du M D, et al. Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the upper Brahmaputra River[J]. Remote Sensing of Environment, 2018, 219: 115-134.
doi: 10.1016/j.rse.2018.10.008
|
[31] |
刘昌明, 门宝辉, 宋进喜. 河道内生态需水量估算的生态水力半径法[J]. 自然科学进展, 2007, 17(1): 42-48.
|
|
[ Liu Changming, Men Baohui, Song Jinxi. Ecological hydraulic radius method for estimating ecological water demand in river[J]. Progress in Natural Science, 2007, 17(1): 42-48. ]
|