收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (3): 385-396.doi: 10.12118/j.issn.1000-6060.2022.357

• 地表过程研究 • 上一篇    下一篇

低空遥感结合卫星影像的河道流量反演

姜磊鹏1,2,3(),丁建丽1,2,3(),包青岭1,2,3,葛翔宇1,2,3,刘景明1,2,3,王瑾杰1,2,3   

  1. 1.新疆大学地理与遥感科学学院,新疆 乌鲁木齐 830046
    2.新疆大学绿洲生态重点实验室,新疆 乌鲁木齐 830046
    3.新疆智慧城市与环境建模自治区普通高校重点实验室,新疆 乌鲁木齐 830046
  • 收稿日期:2022-07-15 修回日期:2022-09-28 出版日期:2023-03-25 发布日期:2023-03-31
  • 通讯作者: 丁建丽
  • 作者简介:姜磊鹏(1997-),男,硕士研究生,主要从事生态水文方面研究. E-mail: 1786032533@qq.com
  • 基金资助:
    国家自然科学基金项目(42171269);新疆院士工作站项目(2020.B—001)

Runoff estimation with low altitude remote sensing and satellite images

JIANG Leipeng1,2,3(),DING Jianli1,2,3(),BAO Qingling1,2,3,GE Xiangyu1,2,3,LIU Jingming1,2,3,WANG Jinjie1,2,3   

  1. 1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, Xinjiang, China
    3. Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Urumqi 830046, Xinjiang, China
  • Received:2022-07-15 Revised:2022-09-28 Online:2023-03-25 Published:2023-03-31
  • Contact: Jianli DING

摘要:

中小型河流的径流量精准监测对干旱区生态稳定具有重要意义。然而中小型河流流量遥感精准反演存在困难。以新疆尼勒克县境内的喀什河种峰场河段为例,基于关系拟合法,依据实测水文数据、无人机数据和卫星数据,构建河宽、水深与流量之间幂函数关系模型,并利用卫星数据的时序性,反演监测河段24次不同时期的径流量。反演结果表明:当径流量为0~50 m3·s-1和50~100 m3·s-1时,基于河宽的水力几何形态径流量反演效果最优,均方根误差(RMSE)分别为7.15 m3·s-1和2.81 m3·s-1;当径流量为100~200 m3·s-1和>200 m3·s-1时,基于水深和河宽的水力几何形态径流量反演效果最佳,RMSE分别为13.37 m3·s-1和1.06 m3·s-1。研究结果可为水文资料缺乏区的中小型河流径流精细化监测与管理提供一种新方法,也对洪流灾害预测、水能资源开发与水生态系统修复具有较高的参考价值。

关键词: 无人机遥感, Sentinel-2, 河道流量, 关系拟合法, 反演

Abstract:

Accurate monitoring of runoff from small and medium-sized rivers is of great significance for ecological stability in arid areas. However, it is difficult to accurately retrieve the flow of small and medium-sized rivers by remote sensing. Taking the Zhongfengchang river section of Kashi River in Nilka County, Xinjiang, China, as an example, this study constructed a power function relationship model between river width, water depth, and discharge based on the relationship fitting method and measured hydrological data, unmanned aerial vehicle data, and satellite data. Using the time series of satellite data, the runoff volume of the monitored river section was inferred 24 times in different periods. The results show that when the runoff rate is 0-50 m3·s-1 and 50-100 m3·s-1, the inversion of the runoff rate based on the hydraulic geometry of the river width is optimal, with root mean square errors (RMSEs) of 7.15 m3·s-1 and 2.81 m3·s-1, respectively; when the runoff rate is 100-200 m3·s-1 and >200 m3·s-1, the inversion of the hydraulic geometry based on water depth and river width is the best, with RMSEs of 13.37 m3·s-1 and 1.06 m3·s-1, respectively. These findings provide a new method for the fine monitoring and management of runoff of small and medium-sized rivers in areas lacking hydrologic data and have high reference value for flood disaster prediction, hydropower resource development, and water ecosystem restoration.

Key words: unmanned remote sensing, Sentinel-2, river discharge, relationship fitting method, estimation