收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2022, Vol. 45 ›› Issue (4): 1042-1049.doi: 10.12118/j.issn.1000-6060.2021.480 cstr: 32274.14.ALG2021480

• 气候与水文 • 上一篇    下一篇

阿尔泰山降水氢氧稳定同位素特征及水汽来源分析

段丽洪1,2(),王圣杰1,2(),张明军1,2,王力福3   

  1. 1.西北师范大学地理与环境科学学院,甘肃 兰州 730070
    2.甘肃省绿洲资源环境与可持续发展重点实验室,甘肃 兰州 730070
    3.阿勒泰市气象局,新疆 阿勒泰 836500
  • 收稿日期:2021-10-18 修回日期:2021-12-20 出版日期:2022-07-25 发布日期:2022-08-11
  • 作者简介:段丽洪(1997-),男,硕士研究生,主要从事寒旱区水文研究. E-mail: 3301135803@qq.com
  • 基金资助:
    国家自然科学基金项目(41971034);甘肃省杰出青年基金项目(20JR10RA112);西北师范大学重大科研项目培育计划项目(NWNU-LKZD2021-04)

Stable hydrogen and oxygen isotopes in precipitation and water vapor source in the Altay Mountains

DUAN Lihong1,2(),WANG Shengjie1,2(),ZHANG Mingjun1,2,WANG Lifu3   

  1. 1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    2. Key Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province, Lanzhou 730070, Gansu, China
    3. Meteorological Bureau of Altay City, Altay 836500, Xinjiang, China
  • Received:2021-10-18 Revised:2021-12-20 Published:2022-07-25 Online:2022-08-11

摘要:

阿尔泰山横亘于亚欧大陆中部,是中纬度西风带气候研究的重点区域之一。利用阿尔泰山地区4个站点的监测数据,研究了该区域降水氢氧稳定同位素的年内变化特征及大气降水线方程,分析了降水同位素的温度效应,并利用后向轨迹探讨了水汽来源。结果表明:(1) 阿尔泰山各站点降水同位素比率在季节上表现为夏高冬低,且南侧站点的季节差异比北侧大,除Novosibirsk外大多数站点的降水氘盈余值为夏低冬高。(2) 除Novosibirsk外,研究区大多数站点大气降水线方程的斜率和截距都低于全球平均值。(3) 各站点降水同位素存在明显的温度效应,体现在季节变化和空间分布上。(4) 后向轨迹表明,研究区受到西风水汽、极地水汽和近源水汽路径的影响,且偏北站点可能受极地水汽路径的影响更大。上述认识有助于明确阿尔泰山不同区域降水同位素时空变化反映的水文气候信息,并为该区域大气水循环及气候变化研究提供参考。

关键词: 降水同位素, 后向轨迹, 水汽来源, 阿尔泰山

Abstract:

The Altay Mountains located in the middle of the Eurasian continent are one of the key areas of climate research in the mid-latitude westerlies. On the basis of the data collected from the four stations across the Altay Mountains, the intra-annual variations of stable hydrogen and oxygen isotopes in precipitation and the meteoric water lines were investigated. The temperature effect on precipitation isotopes was examined, and the water vapor sources were analyzed using backward trajectory. The following results were obtained. (1) The isotope ratios in precipitation are higher in summer and lower in winter, and the seasonal difference in the southern side is larger than that in the northern side. The deuterium excess value in precipitation is lower in summer and higher in winter at most stations, except for Novosibirsk. (2) The slope and intercept of meteoric water lines are lower than the global average at most stations, except for Novosibirsk. (3) The isotope ratios in precipitation have an obvious temperature effect, which can be seen from seasonal variations and spatial patterns. (4) The backward trajectory indicates a joint influence of the westerlies, the polar air mass, and the locally evaporated water vapor, and the northern stations may be more influenced by the polar path than other stations. These findings are useful for understanding the hydrological and climate information about stable precipitation isotopes across different parts of the Altay Mountains and provide a reference for investigating regional atmospheric water cycle and climate change.

Key words: precipitation isotope, backward trajectory, water vapor source, Altay Mountains