[1] |
黄昌勇, 徐建民. 土壤学[M]. 第三版. 北京: 中国农业出版社, 2010: 80-96.
|
|
[ Huang Changyong, Xu Jianmin. Soil science[M]. 3rd ed. Beijing: China Agriculture Press, 2010: 80-96. ]
|
[2] |
鄂崇毅, 张晶, 吴成永, 等. 青海湖流域草甸土光释光年代学研究[J]. 土壤学报, 2018, 55(6): 1325-1335.
|
|
[ E Chongyi, Zhang Jing, Wu Chengyong, et al. Study of chronology of the meadow soil in the Qinghai Lake Basin by means of optically stimulated luminescence[J]. Acta Pedologica Sinica, 2018, 55(6): 1325-1335. ]
|
[3] |
林永崇, 冯金良, 张继峰, 等. 藏北高原安多地区高山草甸土的母质成因及其成土模式[J]. 山地学报, 2012, 30(6): 709-720.
|
|
[ Lin Yongchong, Feng Jinliang, Zhang Jifeng, et al. Origin of parentmaterials and pedogensis of alpine meadow soils in Amdo, northern Tibetan Plateau[J]. Journal of Mountain Science, 2012, 30(6): 709-720. ]
|
[4] |
Feng J L, Hu H P, Chen F. An eolian deposit: Buried soil sequence in an alpine soil on the northern Tibetan Plateau: Implications for climate change and carbon sequestration[J]. Geoderma, 2016, 266: 14-24.
doi: 10.1016/j.geoderma.2015.12.005
|
[5] |
Zhang J, E C Y, Wu C Y, et al. An alpine meadow soil chronology based on OSL and radiocarbon dating, Qinghai Lake, northeastern Tibetan Plateau[J]. Quaternary International, 2020, 562: 35-45.
doi: 10.1016/j.quaint.2020.05.044
|
[6] |
E C Y, Zhang J, Chen Z Y, et al. High resolution OSL dating of aeolian activity at Qinghai Lake, northeast Tibetan Plateau[J]. Catena, 2019, 183: 104180, doi: 10.1016/j.catena.2019.104180.
doi: 10.1016/j.catena.2019.104180
|
[7] |
丁之勇, 鲁瑞洁, 刘畅, 等. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-292.
doi: 10.11867/j.issn.1001-8166.2018.03.0281
|
|
[ Ding Zhiyong, Lu Ruijie, Liu Chang, et al. Temporal change characteristics of climatic and its relationships with atmospheric circulation patterns in Qinghai Lake Basin[J]. Advances in Earth Science, 2018, 33(3): 281-292. ]
doi: 10.11867/j.issn.1001-8166.2018.03.0281
|
[8] |
青海省农业资源区划办公室. 青海土壤[M]. 北京: 中国农业出版社, 1997: 55-262.
|
|
[Office of Agricultural Resources and Regional Planning in Qinghai Province. The soil of Qinghai[M]. Beijing: China Agriculture Press, 1997: 55-262. ]
|
[9] |
青海省地方志编纂委员会. 青海省志: 青海湖志[M]. 西宁: 青海人民出版社, 1998: 41-44.
|
|
[Ditorial Board of Local Chronicles of Qinghai Province. Qinghai Province Local Chronicles: Qinghai Lake records[M]. Xining: Qinghai People’s Publishing House, 1998: 41-44. ]
|
[10] |
曾方明, 薛红盼. 青藏高原东北部晚第四纪黄土-古土壤的元素组成及其物源指示[J]. 中国沙漠, 2020, 40(6): 105-117.
|
|
[ Zeng Fangming, Xue Hongpan. Elemental compositions of the Late Quaternary loess paleosol on the northeastern Qinghai-Tibet Plateau and their implications for provenance[J]. Journal of Desert Research, 2020, 40(6): 105-117. ]
|
[11] |
E C Y, Sohbati R, Murray A S, et al. Hebei loess section in the Anyemaqen Mountains, northeast Tibetan Plateau: A high-resolution luminescence chronology[J]. Boreas, 2018, 47(4): 1170-1183.
doi: 10.1111/bor.12321
|
[12] |
Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1): 57-73.
doi: 10.1016/S1350-4487(99)00253-X
|
[13] |
Murray A S, Wintle A G. The single aliquot regenerative dose protocol: Potential for improvements in reliability[J]. Radiation Measurements, 2003, 37(4): 377-381.
doi: 10.1016/S1350-4487(03)00053-2
|
[14] |
Guérin G, Mercier N, Nathan R, et al. On the use of the infinite matrix assumption and associated concepts: A critical review[J]. Radiation Measurements, 2012, 47(9): 778-785.
doi: 10.1016/j.radmeas.2012.04.004
|
[15] |
Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations[J]. Pergamon, 1994, 23(2-3): 497-500.
|
[16] |
鹿化煜, 安芷生. 前处理方法对黄土沉积物粒度测量影响的实验研究[J]. 科学通报, 1997, 42(23): 2535-2538.
|
|
[ Lu Huayu, An Zhisheng. Experimental study of pretreatment methodson the measurement of grain size distribution of loess sediment[J]. Chinese Science Bulletin, 1997, 42(23): 2535-2538. ]
|
[17] |
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 99-109.
|
|
[ Chi Qinghua, Yan Mingcai. Data manual of applied geochemical element abundance[M]. Beijing: Geological Press, 2007: 99-109. ]
|
[18] |
Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
doi: 10.1038/299715a0
|
[19] |
徐小涛, 邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报, 2018, 20(3): 515-522.
|
|
[ Xu Xiaotao, Shao Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeography, 2018, 20(3): 515-522. ]
|
[20] |
陈旸, 陈骏, 刘连文, 等. 近13万年来黄土高原Rb/Sr记录与夏季风时空变迁[J]. 中国科学(D辑: 地球科学), 2003(6): 513-519.
|
|
[ Chen Yang, Chen Jun, Liu Lianwen, et al. Rb/Sr records on the Loess Plateau and temporal and spatial changes of summer monsoon in recent 130000 years[J]. Science in China (Series D: Geoscience), 2003(6): 513-519. ]
|
[21] |
王攀, 宁凯, 石迎春, 等. 吴起全新世土壤剖面常量元素地球化学特征[J]. 土壤通报, 2019, 50(6): 1261-1268.
|
|
[ Wang Pan, Ning Kai, Shi Yingchun, et al. Geochemical characteristics of major elements of Holocene soil from Wuqi, Shaanxi Province[J]. Chinese Journal of Soil Science, 2019, 50(6): 1261-1268. ]
|
[22] |
顾兆炎. 中国北方风成堆积的风化作用和环境变迁U-Th、10Be及元素地球化学的研究[D]. 北京: 中国科学院地质与地球物理研究所, 1999.
|
|
[ Gu Zhaoyan. Weathering histories of Chinese dust deposits based on uranium and thorium series nuclides cosmogenic 10Be, and major elements[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1999. ]
|
[23] |
郝青振. 陇西盆地晚第三纪风尘沉积的地层学研究[D]. 北京: 中国科学院地质与地球物理研究所, 2001.
|
|
[ Hao Qingzhen. Stratigraphical study on the Late Tertiary eolian deposit in western Loess Plateau, northern China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2001. ]
|
[24] |
张虎才. 元素表生地球化学特征及理论基础[M]. 兰州: 兰州大学出版社, 1997: 2-11.
|
|
[ Zhang Hucai. Characteristics and theoretical basis of element supergene geochemistry[M]. Lanzhou: Lanzhou University Press, 1997: 2-11. ]
|
[25] |
Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China[J]. Quaternary Science Reviews, 2010, 29(23): 3317-3326.
doi: 10.1016/j.quascirev.2010.08.004
|
[26] |
Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
doi: 10.1007/BF00375292
|
[27] |
冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544.
|
|
[ Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical index of alteration) and its application in the neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544. ]
|
[28] |
余平辉, 马锦龙, 廖建波, 等. 柴达木盆地昆北地区路乐河组/下干柴沟组泥岩地层地球化学特征及古环境意义[J]. 干旱区地理, 2020, 43(3): 679-686.
|
|
[ Yu Pinghui, Ma Jinlong, Liao Jianbo, et al. Geochemistry and paleoenvironment significance of Lulehe Formation/Xiaganchaigou Formation located in the north area of Qaidam Basin[J]. Arid Land Geography, 2020, 43(3): 679-686. ]
|
[29] |
范小露, 张新毅, 田明中. 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021, 44(2): 409-417.
|
|
[ Fan Xiaolu, Zhang Xinyi, Tian Mingzhong. Geochemical characteristics and paleoclimatic significance of the last glacial sediments in the southeastern margin of Badain Jaran Desert[J]. Arid Land Geography, 2021, 44(2): 409-417. ]
|
[30] |
Chen J, An Z S, Wang Y J, et al. Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka[J]. Science in China Series D: Earth Sciences, 1999, 42(3): 225-232.
|
[31] |
张彭熹, 张保珍, 钱桂敏, 等. 青海湖全新世以来古环境参数的研究[J]. 第四纪研究, 1994, 14(3): 225-238.
|
|
[ Zhang Pengxi, Zhang Baozhen, Qian Guimin, et al. The study of paleoclimate parameter of Qinghai Lake since Holocene[J]. Quaternary Sciences, 1994, 14(3): 225-238. ]
|
[32] |
Liu X J, Lai Z P, Madsen D, et al. Last deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai-Tibetan Plateau[J]. Journal of Quaternary Science, 2015, 30(3), 245-257.
doi: 10.1002/jqs.2777
|
[33] |
陈克造, Bowler J M, Kelts K. 四万年来青藏高原的气候变迁[J]. 第四纪研究, 1990, 10(1): 21-31.
|
|
[ Chen Kezao, Bowler J M, Kelts K. Palaeoclimati evolution within the Qinghai-Xizang (Tibet) plateau in the last 40000 years[J]. Quaternary Sciences, 1990, 10(1): 21-31. ]
|
[34] |
Liu X J, Lai Z P, Yu L P, et al. Luminescence chronology of aeolian deposits from the Qinghai Lake area in the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications[J]. Quaternary Geochronology, 2012(10): 37-43.
|
[35] |
Hou J Z, Huang Y S, Zhao J T, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2016, 43(3): 1323-1330.
doi: 10.1002/2015GL067317
|
[36] |
Chen F H, Zhang J F, Liu J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review[J]. Quaternary Science Reviews, 2020, 243: 106444, doi: 10.1016/j.quascirev.2020.106444.
doi: 10.1016/j.quascirev.2020.106444
|
[37] |
朱显谟. 论原始土壤的成土过程[J]. 水土保持研究, 1995, 2(4): 83-89.
|
|
[ Zhu Xianmo. On the soil forming process of primitive soil[J]. Research of Soil and Water Conservation, 1995, 2(4): 83-89. ]
|
[38] |
Chen J, Blume H P. Rock-weathering by lichens in Antarctic: Patterns and mechanisms[J]. Journal of Geographical Sciences, 2002, 12(4): 387-396.
doi: 10.1007/BF02844595
|
[39] |
闫文亭, 鄂崇毅, 姜莹莹, 等. 基于光释光测年的共和盆地风沙活动历史研究[J]. 盐湖研究, 2019, 27(1): 28-38.
|
|
[ Yan Wenting, E Chongyi, Jiang Yingying, et al. Study on the history of eolian sand activities in Gonghe Basin based on OSL dating[J]. Journal of Saltlake Research, 2019, 27(1): 28-38. ]
|
[40] |
Zhang J R, Liu Q, Yang L H, et al. Regional hydroclimates regulate the Holocene aeolian accumulation processes of the Qinghai Lake Basin on the northeastern Tibetan Plateau[J]. Catena, 2022, 210: 105866, doi: 10.1016/j.catena.2021.105866.
doi: 10.1016/j.catena.2021.105866
|
[41] |
张晶, 鄂崇毅, 赵亚娟. 青海湖黑马河黄土的高密度光释光测年[J]. 地球环境学报, 2018, 9(6): 557-568.
|
|
[ Zhang Jing, E Chongyi, Zhao Yajuan. A high density optically stimulated luminescence(OSL) dating at Heima He loess section in Qinghai Lake area[J]. Journary of Earth Environment, 2018, 9(6): 557-568. ]
|