[1] IPCC. Climate change:The physical science basis[M/OL]. Cambridge:Cambridge University Press, 2013.
[2] 施雅风,孔昭宸,王苏民,等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学, 1992,(12):1300-1308.[SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. Climate fluctuations and important events during Holocene Megathermal in China[J]. Science in China, 1992,(12):1300-1308.]
[3] SHI Y F, KONG Z Z, WANG S M, et al. Mid-Holocene climates and environments in China[J]. Global and Planetary Change, 1993,(7):219-234.
[4] AN Z S, PORTER S C, KURZBACH J E, et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000,(19):743-762.
[5] HUANG X Y, MEYERSP A, JIA C L, et al. Paleotemperature variability in central China during the last 13 ka recorded by a novel microbiallipid proxy in the Dajiuhu peat deposit[J]. The Holocene, 2013, DOI:10.1177/0959683613483617.
[6] PETERSE F, PRINS M A, BEETS C J, et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation[J]. earth and Planetary Science Letters, 2011, 301:256-264.
[7] KAUFMAN D S, AGER T A, ANDERSON N J, et al. Holocene thermal maximum in the western Arctic(0-180°W)[J]. Quaternary Science Reviews, 2004, 23:529-560.
[8] MARCOTT A S, SHAKUN J D, CLARK P U, et al. A reconstruction of regional and global temperature for the past 11,300 years[J]. Science, 2013, 339:1198-1201.
[9] RENSSEN H, SEPPA H, HEIRI O, et al. The spatial and temporal complexity of the Holocene thermal maximum[J]. Nature Geoscience, 2009, 2:411-414.
[10] LIU Z Y, ZhU J, ROSENTHAL Y, et al. The Holocene temperature conundrum[J]. Proceedings of the National Academy of Sciences, 2014, 111:3501-3505.
[11] JIANG D B, LANG X M, TIAN Z P, et al. Considerable modeldata mismatch in temperature over China during the Mid-Holocene:Results of PMIP simulations[J]. Journal of Climate, 2012, 25:4135-4153.
[12] 刘东生. 黄土与环境[M]. 北京:科学出版社, 1985.[LIU Dongsheng. Loess and environment[M]. Beijing:Science Press, 1985.]
[13] 陈发虎,张维信. 甘青地区的黄土地层学与第四纪冰川问题[M]. 北京:科学出版社, 1993.[CHEN Fahu, ZHANG Weixin. Loess stratigraphy and quaternary glaciers questions in Gan-Qing district[M]. Beijing:Science Press, 1993.]
[14] SCHOUTEN S, HOPMANS E C, SINNINGHE Damsté J S, et al. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:A review[J]. Organic Geochemistry, 2013, 54:19-61.
[15] SCHOUTEN S, HOPMANS E C, SCHEFU E, et al. Distributional variations in marine crenarchaeotal membrane lipids:A new tool for reconstructing ancient sea water temperature?[J]. Earth and Planetary Science Letters, 2002, 204:265-274.
[16] KIM J H, SCHOUTEN S, HOPMANS E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica Et Cosmochimica Acta, 2008, 72:1154-1173.
[17] KIM J H, VAN DER MEER J, SCHOUTEN S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids:Implications for past sea surface temperature reconstructions[J]. Geochimica Et Cosmochimica Acta, 2010,(74):4639-4654.
[18] HUGUET C, MARTRAT B, GRIMALT J O, et al. Coherent millennial scale patterns in U37K' and TEX86H temperature records during the penultimate interglacial-to-glacial cycle in the western Mediterranean[J].Paleoceanography,2011,26, PA2218.
[19] WEIJERS J W H, SCHOUTEN S, VAN DEN DONKER J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica Et Cosmochimica Acta, 2007,(71):703-713.
[20] JIA G D, RAO Z G, ZHANG J, et al. Tetraether biomarker records from a loess-paleosol sequence in the western Chinese Loess Plateau[J]. Frontiers in Microbiology, 2013,(4):199.
[21] PETERSE F, MARTINEZ-GARCI A, ZHOU B, et al. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the last 130,000 years[J]. Quaternary Science Reviews, 2014, 83:76-82.
[22] GAO L, NIE J, CLEMENS S, et al. The importance of solar insolation on the temperature variations for the past 110kyr on the Chinese Loess Plateau[J]. Palaeogeography Palaeoclimatology, Palaeoecology, 2012, 317-318:128-133.
[23] PETERSE F, VAN DER MEER J, SCHOUTEN S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica Et Cosmochimica Acta, 2012, 96:215-229.
[24] YANG H, PANCOST R D, DANG X, et al. Correlations between microbial tetraether lipids and environmental variables in Chinese soils:Optimizing the paleo-reconstructions in semi-arid and arid regions[J]. Geochimica Et Cosmochimica Acta, 2014, 126:49-69.
[25] DING S, XU Y, WANG Y, et al. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau:Implications of brGDGTs-based proxies in cold and dry regions[J]. Biogeosciences, 2015, 12:3141-3151.
[26] DE JONGE C, HOPMANS E C, ZELL C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils:Implications for palaeoclimate reconstruction[J]. Geochimica Et Cosmochimica Acta, 2014, 141:97-112.
[27] YANG H, LU X, DING W, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index(MBT') in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82:42-53.
[28] CHEN F, YU Z, YANG M, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27:351-364.
[29] CHEN F H, CHEN J H, HOLMES J A, et al. Moisture changes over the last millennium in Arid Central Asia:A review, synthesis and comparison with monsoon region[J]. Quaternary Science Reviews, 2010, 29(7-8):1055-1068.
[30] 方小敏, 史正涛, 杨胜利,等. 天山黄土和古尔班通古特沙漠发育及北疆干旱化[J]. 科学通报, 2002,(47):540-545.[FANG Xiaomin, SHI Zhengtao, YANG Shengli, et al. Loess sediments in the north piedmont of Tian Shan and its implication for the development of the Gurbantunggut Desert[J]. Chinese Science Bulletin, 2002,(47):540-545.]
[31] 宋友桂,史正涛. 伊犁盆地黄土分布与组成特征[J]. 地理科学, 2010, 30(2):267-272.[SONG Yougui, SHI Zhengtao, Distribution and compositions of loess sediments in Yili Basin, Central Asia[J]. Scientia Geographica Sinica, 2010, 30(2):267-272.]
[32] 夏敦胜,陈发虎,马剑英,等. 新疆伊犁地区典型黄土磁学特征及其环境意义初探[J]. 第四纪研究, 2010, 30(4):902-911.[XIA Dunsheng, CHEN Fahu, MA Jianying, et al. Magnetic characteristics of loess in the Ili area and their environmental implication[J]. Quaternary Sciences, 2010, 30(4):902-911.]
[33] FANG X M, LU L Q, YANG S L, et al. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China[J]. Science in China Series D:Earth Science, 2002, 45:289-299.
[34] 岳健,穆桂金,杨发相,等. 新疆黄土地貌的遥感判读问题[J]. 干旱区地理, 2013, 36(3):491-501.[YUE Jian, MU Guijin, YANG Faxiang, et al. Remote sensing interpretation of loess landform in Xinjiang[J]. Arid Land Geography, 2013, 36(3):491-501.]
[35] 叶玮,桑长青,赵兴有. 新疆黄土分布规律及粉尘来源[J]. 中国沙漠, 2003, 23(5):514-520.[YE Wei, SANG Changqing, ZHAO Xingyou. Spatial-temporal distribution of loess and source of dust in Xinjiang[J]. Journal of Desert Research. 2003, 23(5):514-520.]
[36] JIA J, XIA D S, WANG B, et al. Magnetic investigation of late quaternary loess deposition, Ili area, China[J]. Quaternary International, 2012, 250:84-92.
[37] LI G Q, WEN L J, XIA D S, et al. Quartz OSL and K-feldspar pIRIR dating of a loess/paleosol sequence from arid Central Asia, Tianshan Mountains, NW China[J]. Quaternary Geochronology, 2015, 28:40-53.
[38] 李景林,张山清,普宗朝,等. 近50 a新疆气温精细化时空变化分析[J]. 干旱区地理,2013, 36(2):228-237.[LI Jinglin, ZHANG Shanqing, PU Zongchao, et al. Spatial-temporal variation of seasonal and annual air temperature in Xinjiang during 1961-2010[J]. Arid Land Geography, 2013, 36(2):228-237.]
[39] CHEN F H, JIA J, CHEN J H, et al. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2014,(under review)
[40] HUGUET C, HOPMANS E C, FEBO-AYLA W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids[J]. Organic Geochemistry, 2006, 37:1036-1041.
[41] HUGUET A, WIESENBERG G L B, GOCKE M, et al. Branched tetraether membrane lipids associated with rhizoliths in loess:Rhizomicrobial overprinting of initial biomarker record[J]. Organic Geochemistry, 2012, 43:12-19.
[42] ZECH R, GAO L, TAROZO R, et al. Branched glycerol dialkyl glycerol tetraethers in Pleistocene loess-paleosol sequences:Three case studies[J]. Organic Geochemistry, 2012, 53:38-44.
[43] MENGES J, HUGUET C, ALCANIZl J M, et al. Water availability determines branched glycerol dialkyl glycerol tetraether distributions in soils of the Iberian Peninsula[J]. Biogeoscience Discuss, 2013, 10:9043-9068.
[44] DIRGHANGI S S, PAGANI M, HREN M T, et al. Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA[J]. Organic Geochemistry, 2013, 59:49-60.
[45] LEDUC G, SCHNEIDER R, KIM J H, et al. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry[J]. Quaternary Science Reviews, 2010, 29:989-1004. |