收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2020, Vol. 43 ›› Issue (1): 144-152.doi: 10.12118/j.issn.1000-6060.2020.01.17

• 气候与水文 • 上一篇    下一篇

基于不同算法等高线曲率的提取与分析

王宁1,姚志宏2   

  1. 1 西北大学城市与环境学院,陕西西安710127 2 华北水利水电大学测绘与地理信息学院,河南郑州450045
  • 收稿日期:2019-06-14 修回日期:2019-09-11 出版日期:2020-01-05 发布日期:2020-01-05
  • 通讯作者: 姚志宏.
  • 作者简介:王宁(1994-),男,硕士研究生,研究方向为数字地形与流域水文分析. E-mail:ningwang24@163.com
  • 基金资助:
    国家重点研发计划(2016YFC0402402);水利部黄土高原水土流失过程与控制重点实验室开放课题(2016005

Extraction and analysis of the contour curvature based on different algorithms

WANG Ning1,YAO Zhi-hong2   

  1. 1 College of Urban and Environmental Science,Northwest University,Xi’an 710127,Shaanxi,China; 2 College of Surveying and Geo-Informatics,North China University of Water Resources and Electric Power,Zhengzhou 450046,Henan,China
  • Received:2019-06-14 Revised:2019-09-11 Online:2020-01-05 Published:2020-01-05

摘要: 等高线曲率是一个重要的地形属性,反应了地形表面在水平方向的凹凸性,表达了地表物质运动的发散和汇合模式。基于安塞县县南沟小流域的矢量等高线数据和DEM,分别利用圆拟合算法(相邻三点法、间隔三点法和最小二乘法)和曲面拟合模型(E模型、S模型和Z模型)提取等高线曲率,通过对实地地形的对比分析,结果表明:(1 在矢量等高线数据的计算结果中,三点拟合法计算结果相比最小二乘法结果差异大,对等高线曲率空间格局分布描述更准确;(2 最小二乘法计算的结果频数分布集中程度最高,两种三点拟合法计算结果频数曲线差别微小;(3 在栅格数字高程模型的计算结果中,基于S模型计算结果在空间格局上较E模型和Z模型的结果差别大,基于E模型的计算结果对等高线曲率描述效果更好。结果能准确说明采用不同算法计算等高线曲率的差别,对在实际数字地形分析中有重要的意义,可为等高线曲率计算提供重要参考。

关键词: 数字地形分析, DEM, 等高线曲率, 圆拟合算法

Abstract: Contour curvature is one of the fundamental topographic indicators that reflects the convexities in the horizontal direction of the topographical surface and expresses the divergence and confluence patterns of the motion of the surface matters. Calculating the contour curvature can measure the information conversion rate of the DEM interpolated by the vector contours, and provide a reference for setting the appropriate DEM resolution. This study based on vector contour data and DEM of Xiannangou watershed in Ansai County, Shaanxi Province, China, using the circle fitting algorithms (adjacent three-point method, interval three-point method and least square method) and surface fitting models (Evans model, Shary model and Zevenbergen model) to calculate the contour curvature respectively. The comparative analysis between the real topography of the site and the computational results indicated as follows: (1) The results from the three-point fitting method are different from the results using the least squares method, and the former describes the spatial pattern distribution of the contour curvature more accurately. (2) The frequency distribution of the results calculated by the least squares method is the highest, and the difference between the frequency curves of the two three-point fitting methods is small. (3) In the calculation results of the DEM, the results from the S-model display a larger difference than that by the E-model and the Z-model in the spatial pattern. The calculation results based on the E-model have a better effect on the contour curvature description. The difference presented by this paper when using different algorithms to calculate the contour curvature provides important reference in retrieving the contour curvature information in the practical digital terrain analysis.

Key words: digital terrain analysis, digital elevation model (DEM), contour curvature, circle fitting algorithms