[1] |
李秋月, 潘学标. 气候变化对我国北方农牧交错带空间位移的影响[J]. 干旱区资源与环境,2012, 26(10):1-6. [LI Qiuyue, PAN Xuebiao. The impact of climate change on boundary shift of farming pasture ecotone in northern China [J]. Journal of Arid Land Resources and Environment, 2012, 26(10):1-6.]<br />
|
[2] |
贾科利. 基于遥感、GIS的陕北农牧交错带土地利用与生态环境效应研究[D]. 陕西:西北农林科技大学, 2007.[JIA Keli. A study on the land use and eco-environment effects assessment based on remote sensing and GIS in agriculture and pasturage interlaced zone of northern Shaanxi[D]. Northwest A&F University, 2007.]<br />
|
[3] |
刘强, 宋松柏, 步永伟. 基于RS和GIS的水土流失综合评价方法——以安吉县为例[J]. 浙江水利科技, 2016, 44(3):31-34. [LIU Qiang, SONG Songbai, BU Yongwei. The comprehensive evaluation method of soil erosion based on RS and GIS:Taking Anji County as an example[J]. Zhejiang Hydrotechnics, 2016, 44(3):31-34.]<br />
|
[4] |
刘炜. 土地利用/覆被变化信息遥感图像自动分类识别与提取方法研究[D]. 陕西:西北农林科技大学, 2012.[LIU Wei. Auto-identify classification technology for LUCC information based on remote sensing data[D]. Northwest A&F University, 2012.]<br />
|
[5] |
LIU T, YANG X. Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis [J]. Remote Sensing of Environment, 2013, 133(12):251-264.<br />
|
[6] |
于文婧, 刘晓娜, 孙丹峰,等. 基于HJ-CCD数据和决策树法的干旱半干旱灌区土地利用分类[J]. 农业工程学报, 2016, 32(2):212-219.[ YU Wenjing, LIU Xiaona, SUN Danfeng, et al. Land use classification in arid and semi-arid irrigated area based on HJ-CCD data and decision tree method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 212-219.]<br />
|
[7] |
张熙, 鹿琳琳, 王萍,等. 基于决策树的漓江上游土地覆盖分类[J]. 测绘科学, 2016, 41(3):100-103.[ZHANG Xi, LU Linlin, WANG Ping, et al. Classification of land cover in upstream of Lijiang river basin based on decision tree technologies[J]. Science of Surveying and Mapping, 2016, 41(3):100-103.]<br />
|
[8] |
马骊驰, 王金亮, 刘广杰,等. 基于改进型决策树遥感分类的土地利用变化研究[J]. 地理空间信息, 2016, 14(7):12-16.[MA Lichi, WANG Jinliang, LIU Guangjie, et al. Research on land use change based on improved decision tree’s remote sensing classification[J]. Geospatial Information, 2016, 14(7):12-16.]<br />
|
[9] |
王晓学, 沈会涛, 林田苗,等. 利用多信息源提高半干旱地区TM影像的森林类型制图精度:以北京西部山区为例[J]. 自然资源学报, 2017, 32(7):1217-1228.[WANG Xiaoxue, SHEN Huitao, LIN Tianmiao, et al. Improving the forest type mapping accuracy in semiarid mountainous areas based on TM images: Take the West Mountain of Beijing as an example[J]. Journal of Natural Resources, 2017, 32(7):1217-1228.]<br />
|
[10] |
方朝阳,邬浩,陶长华,等.鄱阳湖南矶湿地景观信息高分辨率遥感提取[J].地球信息科学学报,2016,18(6):847-856. [ FANG Chaoyang , WU Hao,TAO Changhua, et al. 2016. The wetland information extraction research of Nanji wetland in Poyang Lake based on high resolution remote sensing image[J]. Journal of Geo-information Science, 18(6):847-856.]<br />
|
[11] |
Al-Bassam B F. Land use/cover change analysis using remote sensing data: A case study, Zhengzhou Area, Henan Province, China [J]. Al-Khawarizmi Engineering Journal, 2010, 6(2): 72-82.<br />
|
[12] |
裴欢, 房世峰. 基于地物光谱特征和空间特征的干旱区绿洲土地分类[J]. 地理科学, 2013, 33(11):1395-1399. [PEI Huan, FANG Shifeng.Land classification of arid oasis based on spectral and spatial feature of ground objects [J]. Scientia Geographica Sinica, 2013, 33(11):1395-1399. ]<br />
|
[13] |
LI W, DU J, YI B. Study on classification for vegetation spectral feature extraction method based on decision tree algorithm[C]// Image Analysis and Signal Processing (IASP), 2011 International Conference on. IEEE, 2011:665-669.<br />
|
[14] |
KHATAMI R, MOUNTRAKIS G, STEHMAN S V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research [J]. Remote Sensing of Environment, 2016, 177:89-100. <br />
|
[15] |
候智庭. 时间序列遥感数据植被分类中的特征选择方法研究[D]. 昆明:云南师范大学, 2017. [HOU Zhiting. Study on the feature selection method in time series remote sensing data vegetation classification [D]. Kunming:Yunnan Normal University,2017] <br />
|
[16] |
靳彦华, 熊黑钢, 张芳. 水浇地与旱地春小麦冠层高光谱反射特征比较[J]. 国土资源遥感, 2014, 26(3):24-30. [JIN Yanhua, XIONG Heigang, ZHANG Fang. Comparative study of canopy spectral reflectance characteristics of spring wheat in irrigated land and dry land[J].Remote Sensing for Land & Resources, 2014, 26(3):24-30.]<br />
|
[17] |
雷光斌, 李爱农, 边金虎,等. 基于阈值法的山区森林常绿、落叶特征遥感自动识别方法——以贡嘎山地区为例[J]. 生态学报, 2014, 34(24):7210-7221.[LEI Guangbin, LI Ainong, BIAN Jinhu,et al.An practical method for automatically identifying the evergreen and deciduous characteristic of forests at mountainous areas: A case study in Mt.Gongga Region [J].Acta Ecologica Sinica,2014, 34(24):7210-7221.]<br />
|
[18] |
中国植被编委会. 中国植被[M]. 北京:科学出版社,1980.[China Vegetation Editorial Board. Chinese vegetation [M].Beijing: Science Press, 1980.]<br />
|
[19] |
Wu J, Peng D L. A Research on Extracting Information of the Arid Regions' Vegetation Coverage Using Improved Model of Spectral Mixture Analysis[C]// Multimedia Technology (ICMT), 2010 International Conference on. IEEE, 2010:1-5.<br />
|
[20] |
刘欣. 利用CART算法从LandSat8卫星影像提取居民地的研究[D]. 兰州:兰州大学, 2015.[LIU Xin.Using CART algorithm to extract residential land from LandSat8 satellite image [D]. Lanzhou:Lanzhou University,2015.]<br />
|
[21] |
张娟. 绿洲开发对干旱区生态环境的影响评价[D]. 兰州:兰州大学, 2016.[ZHANG Juan. The impact of the oasis development on ecological environment [D]. Lanzhou :Lanzhou University, 2016.]<br />
|
[22] |
丁小辉, 李华朋, 张树清. 基于多态蚁群算法的高光谱遥感影像最优波段选择[J]. 遥感技术与应用, 2016, 31(2):275-284. [DING Xiaohui, LI Huapeng, ZHANG Shuqing. Optimized band selection of hyperspectral remote sensing image based on polymorphic ant colony algorithm [J]. Remote Sensing Technology and Application, 2016, 31(2):275-284.]<br />
|
[23] |
Rao P V N, Sai M V R S, Sreenivas K, et al. Textural analysis of IRS-1D panchromatic data for land cover classification[J]. International Journal of Remote Sensing, 2002, 23(17): 3327-3345.
|