收稿日期: 2021-01-22
修回日期: 2021-05-17
网络出版日期: 2021-12-03
基金资助
国家重点研发计划资助项目(2019YFC0409105);吉林省社会科学基金项目(2018B175);吉林省教育厅项目(JJKH20200415KJ);四平市社会科学课题项目(SPSK201946)
Construction of ecological security pattern in western Jilin Province
Received date: 2021-01-22
Revised date: 2021-05-17
Online published: 2021-12-03
构建生态安全格局能有效保障区域生态安全,尤其是对生态脆弱区环境改善极为重要。以吉林省西部为研究区,通过生物多样性服务价值、水资源安全、土壤保持、生态需求等4项指标识别生态源地;利用电路理论,结合Linkage Mapper工具和Circuitscape软件识别生态廊道、夹点区、改善区,构建吉林省西部的生态安全格局。结果表明:(1) 识别18块生态源地,占研究区面积8.57%,主要分布在现有保护区周边的湿地。(2) 构建38条关键廊道和7条潜在廊道,主要分布在中部和东部地区,夹点区相对集中于西南部和东部,改善区中建筑用地和盐碱地相对较多。(3) 在构建生态源地、廊道、夹点、改善区综合生态安全格局基础上,提出了“一带、两轴、五区、五组团”生态安全格局保护策略。对保障吉林省西部区域安全及经济与生态协调发展提供决策参考。
张萌,刘吉平,赵丹丹 . 吉林省西部生态安全格局构建[J]. 干旱区地理, 2021 , 44(6) : 1676 -1685 . DOI: 10.12118/j.issn.1000–6060.2021.06.16
The frequency of various ecological problems and the disturbances caused by human activities have brought about significant changes in the structure and function of the ecosystems and affected the ecological security in western Jilin Province. The construction of ecological security patterns can effectively guarantee regional ecological security, which is especially important for the environmental improvement of ecologically fragile areas. Western Jilin Province is a typical ecologically fragile area in China and an important ecological barrier within Jilin Province. Taking western Jilin Province as the study area, four indicators (biodiversity service value, water security, soil conservation, and ecological demands) were selected to identify ecological sources through ecosystem importance evaluation and ecological demand analysis. We used circuit theory combined with the Linkage Mapper tool and Circuitscape software to identify ecological corridors, pinch point regions, and ecological improvement regions and to construct an ecological security pattern for western Jilin Province. On this basis, we then put forward a reasonable ecological security pattern protection strategy. The research results demonstrated the following: (1) There are 18 ecological source areas in the study area. These account for 8.57% of the study area, mainly in the wetlands around the existing protected areas. Ecological source areas within nature reserves should focus on further improving existing protection policies, and ecological source areas outside nature reserves should focus on strengthening protection. (2) There are 38 key corridors and seven potential corridors, mainly in the central and eastern regions. The corridors in the middle are distributed in a net-like pattern, and those in the east are scattered to provide room for animal migration. The pinch point region is relatively concentrated in the southwest and east to maintain landscape connectivity. The ecological improvement region has relatively high amounts of building land and saline land, and the southwestern and eastern areas have high improvement coefficients. The improvement areas can be divided into primary corridor ecological improvement regions and secondary corridor ecological improvement regions, with graded protection. (3) On the basis of constructing comprehensive ecological security patterns, such as ecological sources, corridors, pinch point regions, and ecological improvement regions, we put forward a targeted strategy regarding ecological security pattern called “one belt, two axis, five regions, and five groups”. In previous studies, only the construction of ecological sources has been considered, whereas the further construction of ecological corridors has been neglected. Still, the construction of ecological corridors based on circuit theory and the identification of pinch points and ecological improvement regions can improve the construction of ecological corridor systems. Circuit theory treats animal migration as a random change that is not predictive to the surrounding environment and is in line with the characteristics of animals themselves, and it identifies the structure of ecological corridors relative to reality. It can thus provide a new reference for the construction of ecological security patterns. Constructing a comprehensive ecological security pattern and proposing a reasonable conservation strategy will provide a reference for decision-making to ensure regional security and coordinated economic and ecological development in western Jilin Province.
[1] | 王玉莹, 金晓斌, 沈春竹, 等. 东部发达区生态安全格局构建——以苏南地区为例[J]. 生态学报, 2019, 39(7):2298-2310. |
[1] | [ Wang Yuying, Jin Xiaobin, Shen Chunzhu, et al. Establishment of an ecological security pattern in the eastern developed regions: A case study of the Sunan District[J]. Acta Ecologica Sinica, 2019, 39(7):2298-2310. ] |
[2] | 郑岚, 张志斌, 笪晓军, 等. 嘉峪关市土地生态安全动态评价及影响因素分析[J]. 干旱区地理, 2021, 44(1):289-298. |
[2] | [ Zheng Lan, Zhang Zhibin, Da Xiaojun, et al. Dynamic evaluation and influencing factors of land ecological security in Jiayuguan City[J]. Arid Land Geography, 2021, 44(1):289-298. ] |
[3] | 刘洋, 蒙吉军, 朱利凯. 区域生态安全格局研究进展[J]. 生态学报, 2010, 30(24):6980-6989. |
[3] | [ Liu Yang, Meng Jijun, Zhu Likai. Progress in the research on regional ecological security pattern[J]. Acta Ecologica Sinica, 2010, 30(24):6980-6989. ] |
[4] | Lee J W, Noh H J, Lee Y, et al. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: Inferring from a case study of Korea[J]. Ecology and Evolution, 2014, 4(18):3689-3702. |
[5] | 彭建, 李慧蕾, 刘焱序, 等. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 2018, 73(4):701-710. |
[5] | [ Peng Jian, Li Huilei, Liu Yanxu, et al. Identification and optimization of ecological security pattern in Xiong’an New Area[J]. Acta Geographica Sinica, 2018, 73(4):701-710. ] |
[6] | 赵筱青, 谭琨, 易琦, 等. 典型高原湖泊流域生态安全格局构建——以杞麓湖流域为例[J]. 中国环境科学, 2019, 39(2):768-777. |
[6] | [ Zhao Xiaoqing, Tan Kun, Yi Qi, et al. Constrution of ecological security pattern in typical plateau lake basin: A case of the Qilu Lake Basin[J]. China Environmental Science, 2019, 39(2):768-777. ] |
[7] | 杨志广, 蒋志云, 郭程轩, 等. 基于形态空间格局分析和最小累积阻力模型的广州市生态网络构建[J]. 应用生态学报, 2018, 29(10):3367-3376. |
[7] | [ Yang Zhiguang, Jiang Zhiyun, Guo Chengxuan, et al. Construction of ecological network using morphological spatial pattern analysis and minimal cumulative resistance models in Guangzhou City, China[J]. Chinese Journal of Applied Ecology, 2018, 29(10):3367-3376. ] |
[8] | 陈德权, 兰泽英, 李玮麒. 基于最小累积阻力模型的广东省陆域生态安全格局构建[J]. 生态与农村环境学报, 2019, 35(7):826-835. |
[8] | [ Chen Dequan, Lan Zeying, Li Weiqi. Construction of land ecological security in Guangdong Province from the perspective of ecological demand[J]. Journal of Ecology and Rural Environment, 2019, 35(7):826-835. ] |
[9] | Loro M, Ortega E, Arce R M. Ecological connectivity analysis to reduce the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors with multiple paths and without bottlenecks[J]. Landscape and Urban Planning, 2015, 139:149-162. |
[10] | Cong P F, Chen K X, Qu L M, et al. Determination of landscape ecological network of wetlands in the Yellow River Delta[J]. Wetlands, 2020, 40:2729-2739. |
[11] | 张玉虎, 李义禄, 贾海峰. 永定河流域门头沟区景观生态安全格局评价[J]. 干旱区地理, 2013, 36(6):1049-1057. |
[11] | [ Zhang Yuhu, Li Yilu, Jia Haifeng. Constructing landscape ecological security pattern in Yongding River Watershed: A case of Mengtougou Basin, Beijing[J]. Arid Land Geography, 2013, 36(6):1049-1057. ] |
[12] | Peng J, Yang Y, Liu Y X, et al. Linking ecosystem services and circuit theory to identify ecological security patterns[J]. Science of the Total Environment, 2018, 644:781-790. |
[13] | 倪庆琳, 丁忠义, 侯湖平, 等. 基于电路理论的生态格局识别与保护研究——以宁武县为例[J]. 干旱区资源与环境, 2019, 33(5):67-73. |
[13] | [ Ni Qinglin, Ding Zhongyi, Hou Huping, et al. Ecological pattern recognition and protection based on circuit theory[J]. Journal of Arid Land Resources and Environment, 2019, 33(5):67-73. ] |
[14] | 彭建, 赵会娟, 刘焱序, 等. 区域生态安全格局构建研究进展与展望[J]. 地理研究, 2017, 36(3):407-419. |
[14] | [ Peng Jian, Zhao Huijuan, Liu Yanxu, et al. Research progress and prospect on regional ecological security pattern construction[J]. Geographical Research, 2017, 36(3):407-419. ] |
[15] | 汤洁, 汪雪格, 李昭阳, 等. 基于CA-Markov模型的吉林省西部土地利用景观格局变化趋势预测[J]. 吉林大学学报(地球科学版), 2010, 40(2):405-411. |
[15] | [ Tang Jie, Wang Xuege, Li Zhaoyang, et al. The tendency forecast on land use landscape pattern change in western Jilin Province based on CA-Markov model[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(2):405-411. ] |
[16] | 蒙吉军, 王雅, 王晓东, 等. 基于最小累积阻力模型的贵阳市景观生态安全格局构建[J]. 长江流域资源与环境, 2016, 25(7):1052-1061. |
[16] | [ Meng Jijun, Wang Ya, Wang Xiaodong, et al. Construction of landscape ecological securitypattern in Guiyang based on MCR model[J]. Resources and Environment in the Yangtze Basin, 2016, 25(7):1052-1061. ] |
[17] | 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8):1243-1254. |
[17] | [ Xie Gaodi, Zhang Caixia, Zhang Leiming, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8):1243-1254. ] |
[18] | 谢花林, 李秀彬. 基于GIS的农村住区生态重要性空间评价及其分区管制——以兴国县长冈乡为例[J]. 生态学报, 2011, 31(1):230-238. |
[18] | [ Xie Hualin, Li Xiubin. Spatial assessment and zoning regulations of ecological importance based on GIS for rural habitation in Changgang Town, Xinguo County[J]. Acta Ecologica Sinica, 2011, 31(1):230-238. ] |
[19] | Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. Washington DC, USA: United States Department of Agriculture(USDA), 1997: 1-367. |
[20] | 邹雅婧, 闫庆武, 谭学玲, 等. 渭北矿区土壤侵蚀评估及驱动因素分析[J]. 干旱区地理, 2019, 42(6):1387-1394. |
[20] | [ Zou Yajing, Yan Qingwu, Tan Xueling, et al. Evaluation of soil erosion and driving factors analysis in Weibei mining area[J]. Arid Land Geography, 2019, 42(6):1387-1394. ] |
[21] | 李百安. 基于USLE模型的吉林梨树县土壤侵蚀现状初步分析[D]. 长春: 东北师范大学, 2015. |
[21] | [ Li Baian. A preliminary analysis of the current situation of soil erosion in Lishu County of Jilin based on USLE model[D]. Changchun: Northeast Normal University, 2015. ] |
[22] | 柳艺博. 东北黑土区土壤侵蚀空间格局研究[D]. 杨凌: 西北农林科技大学, 2009. |
[22] | [ Liu Yibo. Spatial distribution of soil erosion in black soil region of northeast China[D]. Yangling: Northwest A & F University, 2009. ] |
[23] | 王治江, 李培军, 万忠成, 等. 辽宁省生态系统服务重要性评价[J]. 生态学杂志, 2007, 26(10):1606-1610. |
[23] | [ Wang Zhijiang, Li Peijun, Wan Zhongcheng, et al. Assessment of ecosystem service importance in Liaoning Province[J]. Chinese Journal of Ecology, 2007, 26(10):1606-1610. ] |
[24] | 师长兴. 砾石对土壤可蚀性的影响及土壤可蚀性值估算方法[J]. 土壤通报, 2009, 40(6):1398-1401. |
[24] | [ Shi Changxing. Effects of gravel content on soil erodibility and the methods of estimating soil erodibility factor K[J]. Chinese Journal of Soil Science, 2009, 40(6):1398-1401. ] |
[25] | 杨勤科, 郭明航, 李智广, 等. 全国土壤侵蚀地形因子提取与初步分析[J]. 中国水土保持, 2013(10):17-21. |
[25] | [ Yang Qinke, Guo Minghang, Li Zhiguang, et al. Extraction and preliminary analysis of topographic factors of soil erosion in China[J]. Soil and Water Conservation in China, 2013(10):17-21. ] |
[26] | 周伏建, 陈明华, 林福兴, 等. 福建省降雨侵蚀力指标R值[J]. 水土保持学报, 1995, 9(1):13-18. |
[26] | [ Zhou Fujian, Chen Minghua, Lin Fuxing, et al. The rainfall erosivity index in Fujian Province[J]. Journal of Soil and Water Conservation, 1995, 9(1):13-18. ] |
[27] | 梁友嘉, 徐中民. 基于LUCC和夜间灯光辐射数据的张掖市甘州区人口空间分布建模[J]. 冰川冻土, 2012, 34(4):999-1006. |
[27] | [ Liang Youjia, Xu Zhongmin. Modeling the spatial distribution of population based on night light radiation and LUCC: A case study in Ganzhou District, Zhangye Municipality[J]. Journal of Glaciology and Geocryology, 2012, 34(4):999-1006. ] |
[28] | 张豆, 渠丽萍, 张桀滈. 基于生态供需视角的生态安全格局构建与优化——以长三角地区为例[J]. 生态学报, 2019, 39(20):7525-7537. |
[28] | [ Zhang Dou, Ju Liping, Zhang Jiehao. Ecological security pattern construction method based on the perspective of ecological supply and demand: A case study of Yangtze River Delta[J]. Acta Ecologica Sinica, 2019, 39(20):7525-7537. ] |
[29] | 彭建, 郭小楠, 胡熠娜, 等. 基于地质灾害敏感性的山地生态安全格局构建——以云南省玉溪市为例[J]. 应用生态学报, 2017, 28(2):627-635. |
[29] | [ Peng Jian, Guo Xiaonan, Hu Yina, et al. Constructing ecological security patterns in mountain areas based on geological disaster sensitivity: A case study in Yuxi City, Yunnan Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):627-635. ] |
[30] | 宋利利, 秦明周. 整合电路理论的生态廊道及其重要性识别[J]. 应用生态学报, 2016, 27(10):3344-3352. |
[30] | [ Song Lili, Qin Mingzhou. Identification of ecological corridors and its importance by integrating circuit theory[J]. Chinese Journal of Applied Ecology, 2016, 27(10):3344-3352. ] |
[31] | 朱强, 俞孔坚, 李迪华. 景观规划中的生态廊道宽度[J]. 生态学报, 2005, 25(9):2406-2412. |
[31] | [ Zhu Qiang, Yu Kongjian, Li Dihua. The width of ecological corridor in landscape planning[J]. Acta Ecologica Sinica, 2005, 25(9):2406-2412. ] |
[32] | 黄九明. 基于电路理论的济南市生态安全格局构建研究[D]. 北京: 中国地质大学, 2020. |
[32] | [ Huang Jiuming. Study on the space demarcation and control measures of Jinan City based on the niche fitness model[D]. Beijing: China University of Geosciences, 2020. ] |
/
〈 |
|
〉 |