地表过程研究

新疆图开沙漠灌丛沙堆和抛物线形沙丘表层沉积物粒度特征及其沉积环境

展开
  • 1. 新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
    2. 新疆干旱区湖泊资源与环境重点实验室,新疆 乌鲁木齐 830054
王佩(1994-),女,硕士研究生,主要从事干旱区环境演变研究. E-mail: 1421563820@qq.com

收稿日期: 2021-01-08

  修回日期: 2021-06-04

  网络出版日期: 2021-12-03

基金资助

新疆师范大学丝绸之路经济带城镇化发展研究中心招标课题(XJNURWJDO62018A02)

Grain size characteristics and sedimentary environment of surface sediments from nebkhas and parabolic dunes in the Tukai Desert, Xinjiang

Expand
  • 1. School of Geography Science and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    2. Xinjiang Key Laboratory of Lake Resources and Environment in Arid Regions, Urumqi 830054, Xinjiang, China

Received date: 2021-01-08

  Revised date: 2021-06-04

  Online published: 2021-12-03

摘要

沉积物粒度特征是分析粒度组成演变过程、判别沉积环境的重要参考。对新疆图开沙漠灌丛沙堆及抛物线形沙丘表层沉积物粒级级配、粒度参数进行了系统分析,并利用Sahu经验模型判断了沉积环境。结果表明:(1) 灌丛沙堆及抛物线形沙丘表层沉积物偏粗,主要由极细砂、细砂、中砂、粗砂组成。(2) 各粒级在不同地貌部位分布存在差异,表层沉积物粒度由迎风坡向背风坡沙粒趋向于细化,由坡底到坡顶沙粒趋于细化。(3) 不同地貌部位之间粒度参数呈现不同变化趋势,且粒度参数之间有相关性,平均粒径与分选系数、偏度、峰态之间的相关性不大,而分选系数、偏度、峰态之间呈现显著的相关性。(4) 沉积物形成环境主要为风成环境及浊流环境。

本文引用格式

王佩,马倩,朱元璞,曾燚 . 新疆图开沙漠灌丛沙堆和抛物线形沙丘表层沉积物粒度特征及其沉积环境[J]. 干旱区地理, 2021 , 44(6) : 1644 -1653 . DOI: 10.12118/j.issn.1000–6060.2021.06.13

Abstract

Sediment grain size characteristics are of great significance in distinguishing aeolian landforms and sedimentary environments, determining transportation methods and dynamic conditions, controlling dune landforms, and restoring paleoclimate changes. This paper investigates the surface sediments in the nebkhas and parabolic dunes of the Tukai Desert, Xinjiang, China, analyzes the characteristics of grain size gradation and grain size parameters through mathematical statistics, and discusses the characteristics of sand dune grain size using the Sahu formula. Knowledge of the grain size characteristics of sediments can help to identify the material sources of desert sediments, explore the regularities of wind-sand flow, and enrich understanding of wind-sand activities. The results of this study indicate that the surface sediments of the nebkhas and parabolic dunes of the Tukai Desert are relatively coarse, being mainly composed of extremely fine sand, fine sand, medium sand, and coarse sand. The surface sediments of the nebkhas are also coarser than those of parabolic dunes. Furthermore, there are differences in the distribution of granules among the different landscapes. In the parabolic dunes, the content of fine sand and extremely fine sand are highest in the southern wing tail, whereas medium sand is most common in the north wing tail. On top of the nebkhas, the content of medium sand and fine sand is the highest, whereas the percentages of extremely fine sand and coarse sand are the highest at the bottom of the windward slopes. From windward slopes to the leeward slopes, the grain size characteristics of the surface sediments of the nebkhas and parabolic dunes tend to be associated with fine sand. The sand grains also tend to be fine from the bottom to the top of the slopes. The average grain size of the surface sediments of the parabolic dunes is greater than that of the surface sediments of the nebkhas, with the average values being 2.17 Ф and 1.89 Ф, respectively. The separation coefficients of the sand on the surface of parabolic dunes and nebkhas were similar, with the average values being 0.65 Φ and 0.64 Φ, respectively, belonging to the medium preference. The surface sediment skewness of both the parabolic dunes and nebkhas is 0.06 Φ, a nearly symmetrical distribution. The kurtosis values of the parabolic dunes and nebkhas were found to be 1.03 Φ and 0.99 Φ, respectively, belonging to medium peaks. A correlation was also found between the particle size parameters of the nebkhas and parabolic dunes. The average particle size has little correlation with the sorting coefficient, skewness, and kurtosis. However, there is a significant correlation between the sorting coefficient, skewness, and kurtosis. According to the Sahu discriminant formula, it was calculated that the Tukai Desert has a complex sedimentary environment, with the sediment formation environment being mainly aeolian and turbid. Distinctions in sand source, topography, wind dynamic conditions, and sand field characteristics, among other factors, contribute to the differences in the grain size characteristics of the surface sand materials of the sand piles of the Tukai Desert parabolic dunes and nebkhas, which have an impact on the desert sedimentary environment.

参考文献

[1] 宋洁, 春喜, 白雪梅, 等. 中国沙漠粒度分析研究综述[J]. 中国沙漠, 2016, 36(3):597-603.
[1] [ Song Jie, Chun Xi, Bai Xuemei, et al. Review of grain size analysis in China desert[J]. Journal of Desert Research, 2016, 36(3):597-603. ]
[2] 吴霞, 哈斯, 杜会石, 等. 库布齐沙漠南缘抛物线形沙丘表面粒度特征[J]. 沉积学报, 2012, 30(5):937-944.
[2] [ Wu Xia, Hasi, Du Huishi, et al. Grain size distribution of parabolic dunes on the southern fringe of Hobq Desert[J]. Acta Sedimentologica Sinica, 2012, 30(5):937-944. ]
[3] 苏松领, 毛东雷, 蔡富艳, 等. 新疆策勒沙漠与砾质戈壁新月形沙丘表面沉积物粒度特征及其沉积环境[J]. 干旱区资源与环境, 2020, 34(8):124-132.
[3] [ Su Songling, Mao Donglei, Cai Fuyan, et al. Grain-size characteristics and sedimentary environment of sediments on the surfaces of crescent-shaped dunes in the desert and gravel Gobi in Cele, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(8):124-132. ]
[4] 鲍锋, 董治宝. 察尔汗盐湖沙漠沙丘沉积物粒度特征分析[J]. 水土保持通报, 2014, 34(6):355-359.
[4] [ Bao Feng, Dong Zhibao. Grain size characteristics of sediments from typical sand dunes in Chaerhan Salt Lake[J]. Bulletin of Soil and Water Conservation, 2014, 34(6):355-359. ]
[5] 潘美慧, 薛雯轩, 伍永秋, 等. 西藏定结地区爬坡沙丘粒度特征分析[J]. 干旱区地理, 2019, 42(6):1337-1345.
[5] [ Pan Meihui, Xue Wenxuan, Wu Yongqiu, et al. Grain size characteristics of the climbing dunes in Dinggye area of Tibet[J]. Arid Land Geography, 2019, 42(6):1337-1345. ]
[6] 钱广强, 董治宝, 罗万银, 等. 回涡沙丘的形态特征与表面物质组成[J]. 中国沙漠, 2013, 32(3):587-592.
[6] [ Qian Guangqiang, Dong Zhibao, Luo Wanyin, et al. Morphology and grain size characteristics of echo dunes[J]. Journal of Desert Research, 2013, 32(3):587-592. ]
[7] 张登山, 田丽慧, 鲁瑞洁, 等. 青海湖湖东沙地风沙沉积物的粒度特征[J]. 干旱区地理, 2013, 36(2):203-211.
[7] [ Zhang Dengshan, Tian Lihui, Lu Ruijie, et al. Grain-size features of aeolian deposits in the eastern shore of Qinghai Lake[J]. Arid Land Geography, 2013, 36(2):203-211. ]
[8] 毛东雷, 吴云霞, 蔡富艳, 等. 新疆策勒绿洲-沙漠过渡带灌丛沙堆与回涡沙丘的粒度分布特性[J]. 泥沙研究, 2019, 44(2):48-54.
[8] [ Mao Donglei, Wu Yunxia, Cai Fuyan, et al. Spatial distribution of sand grain size on aeolian deposition of nebkhas and back vortex dunes in oasis-desert ecotone in Cele, Xinjiang[J]. Sediment Research, 2019, 44(2):48-54. ]
[9] 俞胜清, 阿布都·米基提 周向玲, 等. 新疆喀拉库姆沙漠新月形沙丘不同部位粒度特征[J]. 中国沙漠, 2013, 33(6):1629-1635.
[9] [ Yu Shengqing, Mijiti Abudu, Zhou Xiangling, et al. Grain size characteristics of different parts of the crescent dunes in Karakum Desert, Xinjiang, China[J]. Journal of Desert Research, 2013, 33(6):1629-1635. ]
[10] 杜世松, 伍永秋, 黄文敏, 等. 风成沉积物源分析方法及其应用研究进展[J]. 干旱区研究, 2015, 32(1):184-191.
[10] [ Du Shisong, Wu Yongqiu, Huang Wenmin, et al. Research progress on analysis methods and their application of aeolian sediment sources[J]. Arid Zone Research, 2015, 32(1):184-191. ]
[11] 杨立辉, 叶玮, 郑祥民, 等. 河漫滩相沉积与风成沉积粒度判别函数的建立及在红土中应用[J]. 地理研究, 2014, 33(10):1848-1856.
[11] [ Yang Lihui, Ye Wei, Zheng Xiangmin, et al. The discriminant function with grain size of floodplain and aeolian sediments and its application in the quaternary red clay[J]. Geographical Research, 2014, 33(10):1848-1856. ]
[12] 郭晓阳, 王维, 王国良, 等. 季风边缘区湖泊表层沉积物粒度组分分布特征与影响因素[J]. 地理研究, 2016, 35(4):677-691.
[12] [ Guo Xiaoyang, Wang Wei, Wang Guoliang, et al. Within-lake distributions of grain-size components and environmental implications based on the survey of lake surface sediment of Chinese monsoon marginal area[J]. Geographical Research, 2016, 35(4):677-691. ]
[13] 马茜茜, 谢小松, 肖建华, 等. 阿联酋迪拜中部沙漠沉积物粒度特征及其沉积环境分析[J]. 干旱区资源与环境, 2020, 34(11):104-109.
[13] [ Ma Qianqian, Xie Xiaosong, Xiao Jianhua, et al. Analysis of grain-size characteristics and sedimentary environment of sediments in central Dubai, United Arab Emirates[J]. Arid Land Resources and Environment, 2020, 34(11):104-109. ]
[14] 常宏, 左合君, 王海兵, 等. 黄河乌兰布和沙漠段两岸地表沉积物多重分形特征及其指示意义[J]. 干旱区研究, 2019, 36(6):1559-1567.
[14] [ Chang Hong, Zuo Hejun, Wang Haibing, et al. Multi-fractal features and their significances of surface sediments along both banks of the Yellow River reach in the Ulanbuh Desert[J]. Arid Zone Research, 2019, 36(6):1559-1567. ]
[15] 魏亚娟, 党晓宏, 蒙仲举, 等. 吉兰泰盐湖中心盐爪爪灌丛沙堆形态及其沉积特征[J]. 水土保持研究, 2020, 27(3):385-390.
[15] [ Wei Yajuan, Dang Xiaohong, Meng Zhongju, et al. Morphological and sedimentary characteristics of dune covered by Kalidium foliatum nebkhas in the center of Jilantai Salt Lake[J]. Research of Soil and Water Conservation, 2020, 27(3):385-390. ]
[16] 靳建辉, 曹相东, 李志忠, 等. 艾比湖周边灌丛沙堆风沙沉积记录的气候环境演化[J]. 中国沙漠, 2013, 33(5):1314-1323.
[16] [ Jin Jianhui, Cao Xiangdong, Li Zhizhong, et al. Record for climate revolution in aeolian deposit of nabkhas around the Ebinur Lake[J]. Journal of Desert Research, 2013, 33(5):1314-1323. ]
[17] Folk R L, Ward W C. Brazos river bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1):3-26.
[18] Udden J A. Mechanical compostion of clastic sediments[J]. Bulletin of the Geological Society of America, 1914, 25(1):655-744.
[19] 赵澄林. 沉积岩石学[M]. 北京: 石油工业出版社, 2001: 48-72.
[19] [ Zhao Chenglin. Sedimentary petrology[M]. Beijing: Petroleum Industry Press, 2001: 48-72. ]
[20] Sahu B K. Depositional mechanisms from the size analysis of clastic sediments[J]. Journal of Sedimentary Petrology, 1964, 34(1):73-83.
[21] 马倩, 武胜利, 吴烨, 等. 艾比湖流域风沙强度特征及其空间差异[J]. 水土保持通报, 2014, 34(4):21-27.
[21] [ Ma Qian, Wu Shengli, Wu Ye, et al. Characteristics of sand-blown intensity and spatial differences in Ebinur Lake Basin[J]. Bulletin of Soil and Water Conservation, 2014, 34(4):21-27. ]
[22] 李志忠, 武胜利, 陈蜀江, 等. 伊犁塔克尔莫乎尔沙漠风沙地貌初步研究[J]. 新疆农业科学, 2008, 45(增刊3):113-118.
[22] [ Li Zhizhong, Wu Shengli, Chen Shujiang, et al. Preliminary investigation on wind-sand and topographic feature in Ili Takeermohuer Desert[J]. Xinjiang Agricultural Sciences, 2008, 45(Suppl. 3):113-118. ]
[23] 马倩, 武胜利, 刘永泉, 等. 艾比湖流域抛物线形沙丘表层沉积物粒度特征[J]. 中国沙漠, 2014, 34(3):650-657.
[23] [ Ma Qian, Wu Shengli, Liu Yongquan, et al. Grain size distribution of the parabolic dunes’ sediments in the Ebinur Lake Basin, Xinjiang, China[J]. Journal of Desert Research, 2014, 34(3):650-657.
[24] 凌智永, 李志忠, 李廷伟, 等. 塔克尔莫乎尔沙漠抛物线形沙丘的粒度分布模式[J]. 中国沙漠, 2014, 34(2):325-331.
[24] [ Ling Zhiyong, Li Zhizhong, Li Tingwei, et al. Grain size distribution pattern of parabolic dune at the Takermohuer Desert in Yili, Xinjiang, China[J]. Journal of Desert Research, 2014, 34(2):325-331. ]
[25] 唐进年. 库姆塔格沙漠沉积物特征与沉积环境研究[D]. 北京:中国林业科学研究院, 2018.
[25] [ Tang Jinnian. Sediment characteristics and sedimentary environment of the Kumtag Desert[D]. Beijing: Chinese Academy of Forestry, 2018. ]
[26] 凌智永, 周亚辉, 李廷伟, 等. 东昆仑库木库里沙漠表层沉积物粒度特征、物源与沉积环境[J]. 干旱区地理, 2017, 40(5):1013-1019.
[26] [ Ling Zhiyong, Zhou Yahui, Li Tingwei, et al. Grain-size characteristics, provenance discrimination and sedimentary environment of the surface sediments from Kumkol Desert of eastern Kunlun Mountain[J]. Arid Land Geography, 2017, 40(5):1013-1019. ]
[27] 陈炼彪. 塔克尔穆库尔沙漠成因的深讨[J]. 新疆林业, 1980(2):62-65.
[27] [ Chen Lianbiao. A deep discussion on the causes of the Tak’er Mukul Desert[J]. Xinjiang Forestry, 1980(2):62-65. ]
[28] 李志忠, 凌智永, 陈秀玲, 等. 新疆伊犁河谷晚全新世风沙沉积粒度旋回与气候变化[J]. 地理科学, 2010, 30(4):613-619.
[28] [ Li Zhizhong, Ling Zhiyong, Chen Xiuling, et al. Late Holocene climate changes revealed by grain-size cycles in Takemukul Desert in Yili of Xinjiang[J]. Scientia Geographica Sinica, 2010, 30(4):613-619. ]
[29] 郑博华, 李斌, 黄秋霞, 等. 新疆伊犁河谷冷暖季降水时空分布特征[J]. 沙漠与绿洲气象, 2019, 13(3):80-87.
[29] [ Zheng Bohua, Li Bin, Huang Qiuxia, et al. Diurnal variation characteristics of precipitation in the cold and warm season of Ili River Valley, Xinjiang[J]. Desert and Oasis Meteorology, 2019, 13(3):80-87. ]
文章导航

/