甘肃省地热流体化学及环境同位素特征和形成年龄分析

展开
  • 1 甘肃省地矿局第二地质矿产勘查院,甘肃 兰州 730020; 2 甘肃省地质矿产 勘查开发局,甘肃 兰州 730000;3 甘肃省地矿局第一地质矿产勘查院,甘肃 天水 741020; 4 甘肃省地矿局第三地质矿产勘查院,甘肃 兰州 730050; 5 甘肃省地矿局水文地质工程地质勘察院,甘肃 张掖 734000
张凌鹏(1984-),男,甘肃渭源县人,长安大学水文与水资源工程专业,学士,水工环地质高级工程师,主要从事地热地质、水文 地质及地质环境勘查评价. E-mail: 13919840909@163.com

网络出版日期: 2020-11-25

基金资助

中国地质科学院《中国矿产地质志?甘肃卷?水气资源》项目(DD20160346,DD20190379);中国地质调查局项目(1212011 3077300);甘肃省地下水工程及地热资源重点实验室开放基金项目(20190512)

Hydrochemistry and environmental isotopic characteristics and formation ages analysis of geothermal fluids in Gansu Province

Expand
  • 1 The Second Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Lanzhou 730020, Gansu, China; 2 Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Lanzhou 730000, Gansu, China; 3 The First Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Tianshui 741020, Gansu, China; 4 The Third Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Lanzhou 730050, Gansu, China; 5 Institute of Hydrogeology and Engineering Geology, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Zhangye 734000, Gansu, China

Online published: 2020-11-25

摘要

利用大量的地热流体化学成分及环境同位素(δD、δ18O、14C)测试数据,深入分析了隆起山地 构造对流型、沉降盆地传导型地热流体的化学特征及分布规律,进而对地热流体的环境同位素分 布特征及形成年龄进行了梳理总结,得出了明确的结论。结果表明:隆起山地构造对流型地热田 地热流体主要以断裂上升泉的形式出露,分布于西秦岭-祁连造山带,补给来源为当地及周边大气 降水入渗,地热流体形成年龄一般小于 5 000 ~ 30 000 a,水质较好,属“开启型”的地热系统;热储层 岩性、断裂规模及水热循环方式和深度等明显控制着地热流体化学类型、环境同位素特征和形成 年龄。沉降盆地传导型地热田地热流体主要以管井开采的方式出露;热储埋藏深度小于 1 600 m 的 地热井,地热流体补给来源为当地及周边大气降水入渗,形成年龄一般小于 5 000 ~ 30 000 a,水质 相对较好,属“半开启-半封闭型”的地热系统;热储埋藏深度介于 1 600 ~ 2 600 m 之间的地热开采 井,主要为地质历史时期逐步形成的“古水”,水化学类型复杂且水质较差,地热流体形成年龄介于 30 000 ~ 50 000 a,属“封闭型”的地热系统;热储层岩性、埋藏深度、地下水在岩层中的滞留时间与循 环深度等明显控制着地热流体化学类型、环境同位素富集程度和形成年龄。

本文引用格式

张凌鹏, 丁宏伟, 张家峰, 王玉玺, 田辽西 . 甘肃省地热流体化学及环境同位素特征和形成年龄分析[J]. 干旱区地理, 2020 , 43(6) : 1496 -1504 . DOI: 10.12118/j.issn.1000-6060.2020.06.10

Abstract

Based on a large number of chemical composition and environmental isotope (δD, δ18O, 14C) test data of geothermal fluid, this paper analyzes the chemical characteristics and distribution rules of the convective and conductive geothermal fluid in the uplifted mountainous area, Gansu Province, China. The environmental isotope distribution characteristics and formation ages of the geothermal fluid are then then analyzed. Results show that the geothermal fluid in the convective geothermal field in the uplifted mountainous area is mainly exposed in the form of fracture rising spring, which is distributed in the west Qinling and Qilian orogenic belt. The source of supply is the infiltration of local and surrounding atmospheric precipitation. The formation age of the geothermal fluid is generally less than 5 000- 30 000 a and good water quality is observed. Hence, the geothermal fluid belongs to the“open” geothermal system. The geothermal fluid in the conductive geothermal field in the subsidence basin is mainly exposed by tube well exploitation. Exploitation wells with a buried depth of less than 1 600 m are supplied by the infiltration of local and surrounding atmospheric precipitation. Here, the formation ages of the geothermal fluid are generally less than 30 000 a and the water quality is relatively good. Hence, this belongs to the“semi-open semi- closed”geothermal system. The geothermal open exhibits a buried depth of 1 600-2 600 m. The production wells are mainly the“ancient water”formed gradually in the geological historical period with a complex hydrochemical type and with poor water quality. This then belongs to the“closed”geothermal system with the formation ages of geothermal fluid between 30 000-50 000 a. Generally speaking, the lithology of the thermal reservoir, burial depth, retention time, and circulation alternation of groundwater in the rock layer obviously control the chemical type, environmental isotope, and formation ages of geothermal fluid. Based on the geothermal occurrence law, if the buried depth of the thermal reservoir is deeper, the geological conditions are more closed, and δD and δ18O are more enriched, indicating that the formation age of the fluid is older.

参考文献

[1] 中华人民共和国国家质量监督检验检疫总局. GB/T 11615- 2018 地 热 资 源 地 质 勘 查 规 范 [S]. 北 京: 中 国 标 准 出 版 社 , 2018. [General Administration of Quality Supervision, Inspection meltwater runoff process analysis based on δD and δ18O isotope and chemistry in the Laohugou glacier basin of the Qilian Moun⁃ tains[J]. Arid Land Geography, 2015, 38(5): 927-935. ] [10] 高振荣, 李红英, 曹淑超, 等. 近 31a 河西走廊地区深层地温变 化及突变分析[J]. 干旱区地理, 2013, 36(6): 1006-1012. [GAO Zhenrong, LI Hongying, CAO Shuchao, et al. Deep ground temper⁃ ature variation and mutation of the Hexi Corridor region in recent 31 years[J]. Arid Land Geography, 2013, 36(6): 1006-1012. ] [11] 陈粉丽, 张明军, 马潜, 等. 兰州及其周边区域大气降水δ18O 特 and Quarantine of the People’s Republic of China. GB/T 11615- 2018 Geologic exploration standard of geothermal resources [S]. 征及其水汽来源 [J]. 环境科学 , 2013, (46): 3755-3763. [CHEN Beijing: Standards Press of China, 2018. ] [2] 喻生波, 谢娜, 赵多慧, 等. 甘肃省地热资源调查评价与区划报 告[R]. 兰州: 甘肃省地质环境监测院, 2008. [YU Shengbo, XIE Na, ZHAO Duohui, et al. Investigation and regionalization of geo⁃ thermal resources in Gansu Province[R]. Lanzhou: Gansu Institute of Geological Environment Monitoring, 2008. ] [3] 李百祥, 施孝. 甘肃省盆山构造格局对地温场分布及地热资源 类型的控制[C] // 国际地热协会西太平洋论文集, 2009 年. [LI Baixiang, SHI Xiao. The control of basin mountain structure pat⁃ tern on the distribution of geothermal field and the types of geo⁃ thermal resources in Gansu Province[C] //International Geother⁃ mal Society Western Pacific Papers, 2009. ] [4] 安永康, 孙知新, 李百祥. 甘肃省地热资源分布特征、开发现状 与 前 景 [J]. 甘 肃 地 质 学 报, 2005, (2): 70- 75. [AN Yongkang, SUN Zhixin, LI Baixiang. Distribution characteristics, develop⁃ ment status and prospect of geothermal resources in Gansu Prov⁃ ince[J]. Acta Geologica Gansu, 2005, (2): 70-75. ] [5] 郑希民, 王多云, 李凤杰, 等. 兰州-民和断陷盆地地热地质条 件分析及热储概念模型[J]. 西北地震学报, 2003, (3): 215-220. [ZHENG Ximin, WANG Duoyun, LI Fengjie, et al. Analysis of geological conditions on geothermal and the conceptual model of geothermal reservoir in Lanzhou-Minhe Basin[J]. Northwestern Seis⁃ mological Journal, 2003, (3): 215-220. ] [6] 白福, 马根喜. 兰州地热资源赋存特征浅析[J]. 水文地质工程地 质, 2005, (6): 3- 5. [BAI Fu, MA Genxi. Analysis on the occur⁃ rence characteristics of geothermal resources in Lanzhou[J]. Hy⁃ drogeology and Engineering Geology, 2005, (6): 3-5. ] [7] 张子祥, 李文鑫. 兰州市永登县地热水成因模式和地质模式[J]. 地质科技情报, 2015, (2): 194-220. [ZHANG Zixiang, LI Wenx⁃ in. Genetic model and geological model of geothermal water in Yongdeng County, Lanzhou City[J]. Geological Science and Tech⁃ nology Information, 2015, (2): 194-220. ] [8] 丁宏伟, 姚吉禄, 何江海. 张掖市地下水位上升区环境同位素特 征 及 补 给 来 源 分 析 [J]. 干 旱 区 地 理, 2009, 32(1): 1- 8. [DING Hongwei, YAO Jilu, HE Jianghai. Environmental isotope charac⁃ teristics and groundwater recharge in groundwater level rise area in Zhangye City[J]. Arid Land Geography, 2009, 32(1): 1-8. ] [9] 王彩霞, 张杰, 董志文, 等. 基于氢氧同位素和水化学的祁连山 老虎沟冰川区径流过程分析[J]. 干旱区地理, 2015, 38(5): 927- 935. [WANG Caixia, ZHANG Jie, DONG Zhiwen, et al. Glacier Fenli, ZHANG Mingjun, MA Qian, et al. Characteristics of δ18O in precipitation and water vapor sources in Lanzhou City and its sur⁃ rounding areas[J]. Environmental Science, 2013, (46): 3755-3763. ] [12] 马致远, 王心刚, 苏艳, 等. 陕西关中盆地中部地下热水 H、O 同 位 素 交 换 及 其 影 响 因 素 [J]. 地 质 通 报, 2008, 27(6): 888- 894. [MA Zhiyuan, WANG Xingang, SU Yan, et al. Oxygen and hydro⁃ gen isotope exchange and its controlling factors in subsurface geo⁃ thermal waters in the central Guanzhong Basin, Shaanxi[J]. Geo⁃ logical Bulletin of China, 2008, 27(6): 888-894. ] [13] 秦大军, 庞忠和, JEFFREY V T, 等. 西安地区地热水和渭北岩 溶水同位素特征及相互关系[J]. 岩石学报, 2005, 21(5): 1489- 1500. [QIN Dajun, PANG Zhonghe, JEFFREY V T, et al. Isotopes of geothermal water in Xi’an area and implicatings on its relation to karstic groundwater in north mountains[J]. Acta Petrologica Sini⁃ ca, 2005, 21(5): 1489-1500. ] [14] 杨波, 尹观. 水体同位素组成及氘过量参数在地热勘探中的示 踪作用——以四川绵竹三箭水温泉开发为例[J]. 矿物岩石地 球化学通报, 2004, 23(2): 129-133. [YANG Bo, YIN Guan. The tracer function of isotope composition and deuterium excess pa⁃ rameter of water bodies on prospecting for geothermal water: Tak⁃ ing the prospecting for geothermal water in Sanjianshui, Sichuan for example[J]. Bulletin of Mineralogy, Petrology and Geochemis⁃ try, 2004, 23(2): 129-133. ] [15] 中华人民共和国国家质量监督检验检疫总局. GB8537-2018 饮用天然矿泉水[S]. 2018. [General Administration of Quality Su⁃ pervision, Inspection and Quarantine of the People’s Republic of China. GB8537-2018 drinking natural mineral water[S]. 2018. ] [16] 韩知明, 贾克力, 史小红, 等. 克鲁伦河流域下游水体氢氧同位 素 与 水 化 学 特 征 [J]. 干 旱 区 地 理, 2019, 42(1): 85- 93. [HAN Zhiming, JIA Keli, SHI Xiaohong, et al. The hydrochemical and hydrogen and oxygen isotopic characteristics of water in the low reach of Kherlen River[J]. Arid Land Geography, 2019, 42(1): 85- 93. ] [17] 文广超, 王文科, 段磊, 等. 基于水化学和稳定同位素定量评价 巴音河流域地表水与地下水转化关系[J]. 干旱区地理, 2018, 41(4): 734-743. [WEN Guangchao, WANG Wenke, DUAN Lei, et al. Quantitatively evaluating exchanging relationship between riv⁃ er water and groundwater in Bayin River Basin of northwest China using hydrochemistry and stable isotope[J]. Arid Land Geography, 2018, 41(4): 734-743. ]
文章导航

/