气候与水文

昆仑山提孜那甫河流域2012—2016年近地表气温时空分布特征

展开
  • (1 山西师范大学地理科学学院,山西 临汾 041000;
    2 中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011)
孙从建(1986- ),男,河北沧州人,副教授,博士,从事气候变化与水循环研究. E-mail: suncongjian@sina.com

收稿日期: 2018-11-03

  修回日期: 2019-03-01

  网络出版日期: 2019-05-18

基金资助

新疆维吾尔自治区自然科学基金面上项目(2016D01A075)

Spatiotemporal distribution of nearsurface temperature over the Tizinafu River Basin in the Kunlun Mountains from 2012 to 2016

Expand
  • (1 School of Geographical Sciences,Shanxi Normal University,Lifen 041000,Shanxi,China; 2 State Key Laboratory of Desert 
    and Oasis Ecology,Xinjiang institute of Ecology and Geography,Chinese Academy of Science,Urumqi 830011,Xinjiang,China)

Received date: 2018-11-03

  Revised date: 2019-03-01

  Online published: 2019-05-18

摘要

基于典型高寒内陆河——提孜那甫河流域的6个不同海拔自设气象站的2012—2016年气温数据,分析了该地区不同海拔区域近地表气温的时间变化特征和空间变异特征。结果表明:(1) 低、中、高山区均温均可被sine函数高度拟合(R2>87%),且随海拔增高气温波动减弱,时间变化延迟,气温变幅差异减小。(2) 日均温与月均温最低值出现月份不同步,且这一情况在海拔相对较高区更易出现。(3) 年内尺度不同区域气温空间差异:D1区(麻扎—库地)在秋、冬季最大;D3区(库地达坂—西合休)在春、夏、秋最小;D4区(西合休/库地达坂—莫木克)在夏季最大,冬季最小;D5区(莫木克—江卡)在春季最大,相关分析结果表明:气温空间分异受海拔影响大。研究结果将对提高高寒山区气候特征认知及改善冰雪水循环模拟具有重要促进意义。

本文引用格式

孙从建, 李伟, 陈伟, 张子宇, 陈若霞 . 昆仑山提孜那甫河流域2012—2016年近地表气温时空分布特征[J]. 干旱区地理, 2019 , 42(3) : 459 -468 . DOI: 10.12118/j.issn.1000-6060.2019.03.01

Abstract

Nearsurface temperature is a key parameter for the hydrological modeling.It not only directly affects the process of melting snow/glacier and permafrost,but also controls the exchange of water and heat between the surface and the atmosphere.Base on the observed nearsurface temperature data from the six selfestablished meteorological stations in the typical alpine basin-Tizinafu River Basin over the Kulun Mountains,Xinjiang,China from 2012 to 2016,we analyzed the spatial and temporal distribution characteristics of the near surface temperature in the study area.The results show as follows: (1) The data of the average temperature can be fitted very well by the sine function ([WTBX]R[WTBZ]2>87%).As the altitude of the stations increases,the dispersion degree of the data is lowered,and the temporal variation got delayed,and the temperature fluctuated less. (2) The occuring months of the lowest dailymean temperature and monthlymean temperature are inconsistent,and the phenomenon appear more frequently at higher attitude. (3) There is a spatial difference about the temperature within a year.The situation of the spatial heterogeneity in temperature had 5 subregions:The maximum of difference degree in space is in D1 (MazaKudi) in autumn /winter and in D5 (MomokeJiangka) in spring; the minimum is in D3 (KudidabanShihshu) in spring,summer and autumn.There is most significant difference in D4 (Shihshu/KudidabanMomoke) in summer and lowest difference in winter. (4) The results of correlation analysis show that the degree of spatial variability of temperature is highly correlated with the altitude.This study would be helpful to understand climatic characteristics on high and cold mountains of central Asia and optimize the water recycling modelling between solid state water and liquid water.

参考文献

[1] 刘蛟, 刘铁, 黄粤, 等. 基于遥感数据的叶尔羌河流域水文过程模拟与分析 [J]. 地理科学进展, 2017, 36(6): 753-761.[LIU Jiao, LIU Tie, HUANG Yue, et al. Simulation and analysis of the hydrological processes in the Yarkant River Basin based on remote sensing data [J]. Progress in Geography, 2017, 36(6): 753-761.] [2] RICHARD C, GRATTON D J. The importance of the air temperature variable for the snowmelt runoff modeling using SRM [J]. Hydrological Processes,2001, 15(18): 3357-3370. [3] LI Xiuping, WANG Lei, CHEN Deliang, et al. Near-surface air temperature lapse rates in the mainland China during 1962-2011 [J]. Journal of Geophysical Research Atmospheres, 2013, 118(14): 7505-7515. [4] BLOSCHL G. The influence of uncertainty in air temperature and albedo on Snowmelt [J]. Nordic Hydrology, 1991, 22(2): 95-108. [5] SCALLY F A D. Deriving lapse rates of slope air temperature for Meltwater Runoff Modeling in Subtropical Mountains: An example from the Punjab Himalaya, Pakistan [J]. Mountain Research & Development, 1997, 17(4): 353-362. [6] SUN Congjian, SHEN Yanjun, CHEN Yaning, et al. Quantitative evaluation of the rainfall influence on streamflow in an inland mountainous river basin within Central Asia [J]. Hydrological Sciences Journal, 2017, 62(1): 17-30. [7] 陈亚宁, 李稚, 范煜婷, 等. 西北干旱区气候变化对水文水资源影响研究进展 [J]. 地理学报, 2014, 69(9):1295-1304.[CHEN Yaning, LI Zhi, FAN Yuting, et al. Research progress on the impact of climate change on water resources in the arid region of Northwest China [J]. Acta Geographica Sinica, 2014, 69(9):1295-1304. ] [8] JI Fei, WU Zhaohua, HUANG Jianping, et al. Evolution of land surface air temperature trend [J]. Nature Climate Change, 2014, 4(6):462-466. [9] 李双双, 芦佳玉, 延军平,等. 1970—2015年秦岭南北气温时空变化及其气候分界意义 [J]. 地理学报, 2018, 73(1):13-24.[LI Shuangshuang, LU Jiayu, YAN Junping, et al. Spatiotemporal variability of temperature in northern and southern Qinling Mountains and its influence on climatic boundary [J]. Acta Geographica Sinica, 2018, 73(1):13-24. ] [10] 刘世博, 臧淑英, 张丽娟,等. 东北冻土区MODIS地表温度估算 [J]. 地理研究, 2017, 36(11):2251-2260.[LIU Shibo, ZANG Shuying, ZHANG Lijuan, et al. Estimation of land surface temperature from MODIS in Northeast China [J]. Geographical Research, 2017, 36(11):2251-2260. ] [11] DU Mingxia, ZHANG Mingjun, WANG Shengjie, et al. Near-surface air temperature lapse rates in Xinjiang, northwestern China [J]. Theoretical & Applied Climatology, 2017: 1-14. [12] 江净超, 刘军志, 秦承志, 等. 中国近地表气温直减率及其季节和类型差异[J]. 地理科学进展, 2016, 35(12): 1538-1548.[JIANG Jingchao, LIU Junzhi, QIN Chengzhi, et al. Near-surface air temperature lapse rates and seasonal and type differences in China [J]. Progress in Geography, 2016, 35(12): 1538-1548. ] [13] 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考 [J]. 干旱区地理, 2012, 35(1): 1-9. [CHEN Yaning, YANG Qing, LUO Yi, et al. Ponder on the issues of water resources in the arid region of northwest China [J]. Arid Land Geography, 2012, 35(1): 1-9. ] [14] 杨兴国, 秦大河, 张廷军,等. 珠穆朗玛峰北坡地区气温和湿度变化特征[J]. 气象学报, 2012, 70(4):855-866. [YANGXingguo, QIN Dahe, ZHANG Tingjun, et al. Characteristics of the air temperature and humidity on the north slope of Mt Qomolangma [J]. Acta Geographica Sinica, 2012, 70(4):855-866. ] [15] 李宗省, 何元庆, 辛惠娟, 等. 我国横断山区1960-2008年气温和降水时空变化特征 [J]. 地理学报, 2010, 65(5):563-579.[LI Zongxing, HE Yuanqing, XIN Huijuan, et al. Spatio-temporal variations of temperature and precipitation in Mts.Hengduan Region during 1960-2008 [J]. Acta Geographica Sinica, 2010, 65(5):563-579. ] [16] SHEN Yanjun, SHEN Yanjun, GOETZ J, et al. Spatial-temporal variation of near-surface temperature lapse rates over the Tianshan Mountains, central Asia[J]. Journal of Geophysical Research Atmospheres, 2016, 121(23):14006—14017. [17] 祁威, 张镱锂, 刘林山,等. 羌塘高原核心区2013-2014年土壤温度变化特征 [J]. 地理研究, 2017, 36(11):2075-2087.[QI Wei, ZHANG Yili, LIU Linshan, et al. Characteristics of soil temperature variation in core region of Northern Tibetan Plateau in China during 2013-2014 [J]. Geographical Research, 2017, 36(11):2075-2087. ] [18] 姚永慧, 张百平. 青藏高原气温空间分布规律及其生态意义[J]. 地理研究, 2015, 34(11):2084-2094.[YAO Yonghui, ZHANG Baiping. The spatial pattern of monthly air temperature of the Tibetan Plateau and its implications for the geo-ecology pattern of the Plateau [J]. Geographical Research, 2015, 34(11): 2084-2094. ] [19] 谢健, 刘景时, 杜明远, 等. 念青唐古拉山南坡气温分布及其垂直梯度[J]. 地理科学, 2010, 30(1):113-118. [XIE Jian, LIU Jingshi, DU Mingyuan, et al. Altitudinal distribution of air temperature over a southern slope of Nyainqentanglha Mountain,Tibetan Plateau[J]. Scientia Geographica Sinica, 2010, 30(1):113-118. ] [20] 李成秀, 杨太保, 田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素 [J]. 山地学报, 2015, 33(2):157-165.[LI Chengxiu, YANG Taibao, TIAN Hongzhen. Variation of Western Kunlun Mountain glaciers monitored by remote sensing during 1976-2010 [J]. Mountain Research, 2015, 33(2):157-165. ] [21] 郑茜, 孙建宝, 张永. 基于Landsat-8时间序列影像分析西昆仑山地区冰川滑移特征 [J]. 大地测量与地球动力学, 2016, 36(7):604-608. [ZHENG Qian, SUN Jianbao, ZHANG Yong. Fast and uniformly slipping Western-Kunlun Glaciers from time-series deformation analysis using periodically captured Landsat-8 imagery [J]. Journal of Geodesy and Geodynamics. 2016, 36(7):604-608. ] [22] 王翠, 李生宇, 雷加强, 等. 叶尔羌河流域气候变化特征及趋势分析 [J]. 干旱区资源与环境, 2018,32(1):155-160. [WANG Cui, LI Shengyu, LEI Jiaqiang, et al. Regional climatic characteristics and its change trend in Yeerqiang river basin [J]. Journal of Arid Land Resources and Environment, 2018,32(1):155-160. ] [23] 庄宇娇, 贾翔, 陈孟禹,等. 提孜那甫河流域冰-草生态交错带MODZS动态特征 [J]. 山地学报, 2016, 34(6):780-787.[ZHUANG Yujiao, JIA Xiang, CHEN Mengyu, et al. Dynamic features of the Ice-Grass ecotone in Tizinafu River Basin based on MODIS data [J]. Mountain Research, 2016, 34(6):780-787. ] [24] 陈蜀江, 贾翔, 黄铁成, 等. 新疆提孜那甫河流域山区冰-草生态交错带的空间格局及其动态变化研究 [J]. 冰川冻土, 2015, 37(6):1650-1659.[CHEN Shujiang, JIA Xiang, HUANG Tiecheng, et al. The study of spatial pattern and dynamic changes of the ice-grass ecotone in the mountain region of the Xinjiang Tizinafu River basin [J]. Journal of Glaciology and Geocryology, 2015, 37(6):1650-1659. ] [25] 张玉芳. 提孜那甫河流域卫星雪盖时空分布研究 [D]. 南京:南京大学, 2014. [ZHNANG Yufang, Spatial and temporal characteristic of satellite snow Cover in the Tizinafu Watershed [D]. NanJing: NanJing University,2014. ] [26] 陈蜀江, 李琪, 黄铁成,等.提孜那甫河流域冬季牲畜宿营地环境特征遥感分析 [J]. 草业科学, 2016, 33(1):153-163. [CHEN Shujiang, LI Qi, HUANG Tiecheng, et al. The analysis of environmental characteristics about the winter cattlecamp in the Tizinafu River using remote sensingtechnology [J]. Pratacultural Science, 2016, 33(1):153-163. ] [27] 段永超, 孟凡浩, 刘铁, 等.昆仑山提孜那甫河流域雨雪分离的温度条件分析 [J]. 地球信息科学学报, 2017, 19(12):1661-1669. [DUAN Yongchao, MENG Fanhao, LIU Tie, et al. Analysis of temperature conditions for rain and snow separation in Tizinafu River Basin of Kunlun Mountains [J]. Journal of Geo-information Science, 2017, 19(12):1661-1669. ] [28] 颜伟, 刘景时, 罗光明, 等. 基于MODIS数据的2000—2013年西昆仑山玉龙喀什河流域积雪面积变化 [J]. 地理科学进展, 2014, 33(3):315-325. [YAN Wei, LIU Jingshi, LUO Guangming, et al. Snow cover area changes in the Yurungkax River Basin of West Kunlun Mountains during 2000-2013 using MODIS data [J]. Progress in Geography, 2014, 33(3):315-325. ] [29] 曾昭昭, 王晓峰, 任亮. 基于GWR模型的陕西秦巴山区TRMM降水数据降尺度研究[J]. 干旱区地理, 2017, 40(1):26-36.[ ZENG Zhaozhao, WANG Xiaofeng, REN Liang. Spatial downscaling of TRMM rainfall data based on GWR model for Qinling-Daba Mountains in Shaanxi Province[J].Arid Land Geography, 2017, 40(1):26-36. ] [30] 陈曦, 胡汝冀, 姜逢清, 等. 中国干旱区自然地理[M]. 北京:科学出版社, 2015. [CHEN Xi, HU Ruji, JIANG Fengqing, et al. Natural geography in arid areas of China[M]. Beijing: Science Press, 2015. ]
文章导航

/