生态与环境

生态系统服务及其权衡/协同关系多情景模拟——以黄河流域山西段为例

  • 徐铭璟 ,
  • 段宝玲 ,
  • 冯强 ,
  • 吕萌
展开
  • 山西财经大学资源环境学院,山西 太原 030006
徐铭璟(1998-),女,硕士研究生,主要从事生态环境管理方面的研究. E-mail: 19503413673@163.com
段宝玲(1981-),女,博士,副教授,主要从事资源环境评价与区域规划方面的研究. E-mail: sxnddbl@163.com

收稿日期: 2024-08-06

  修回日期: 2025-01-05

  网络出版日期: 2025-07-04

基金资助

教育部人文社会科学研究规划基金项目(22YJAZH018);山西省基础研究计划资助项目(20210302123481);地表过程与资源生态国家重点实验室开放课题(2022-KF-02)

Ecological services and their trade-offs/synergistic relationships in multi-scenario simulations: A case of the Shanxi section of the Yellow River Basin

  • XU Mingjing ,
  • DUAN Baoling ,
  • FENG Qiang ,
  • LYU Meng
Expand
  • College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China

Received date: 2024-08-06

  Revised date: 2025-01-05

  Online published: 2025-07-04

摘要

黄河流域山西段是我国重要的生态屏障区,预测未来生态系统服务权衡和协同态势对于生态系统优化管理十分重要。基于此,采用系统动力学、斑块级土地利用变化模拟模型(PLUS)以及均方根偏差分析2030年自然发展、经济发展、生态保护、综合发展和碳达峰情景下生态系统服务(产水、土壤保持和固碳服务)供给量和需求量及权衡/协同关系。结果表明:(1) 经济发展情景下产水服务供给量最高为73.27 mm,生态保护情景下产水和固碳服务需求量最低,分别为59.89 mm和14.92 t C·hm-2。(2) 生态保护情景下产水与土壤保持、产水与固碳服务供给权衡度最低,生态保护情景下产水与土壤保持、产水与固碳服务需求量协同强度均较低。(3) 生态保护和碳达峰情景下产水服务与固碳服务供需比均大于0,各情景下土壤保持服务供需比相似。因此,黄河流域山西段未来发展中应优化土地利用方式,统筹生态安全和经济社会发展,完成“碳达峰”,为实现“碳中和”目标奠定基础。

本文引用格式

徐铭璟 , 段宝玲 , 冯强 , 吕萌 . 生态系统服务及其权衡/协同关系多情景模拟——以黄河流域山西段为例[J]. 干旱区地理, 2025 , 48(7) : 1206 -1219 . DOI: 10.12118/j.issn.1000-6060.2024.471

Abstract

The Shanxi section of the Yellow River Basin is a crucial ecological barrier in China. Predicting future trade-offs and synergies among ecosystem services is essential for effective ecosystem management. This study employs system dynamics, a patch-level land use change simulation model, and root mean square deviation analysis to explore the trade-offs between the supply and demand of ecosystem services, including water yield, soil conservation, and carbon sequestration, across five scenarios for 2030: natural development, economic development, ecological protection, comprehensive development, and carbon peak scenario. The findings reveal the following. (1) Under the economic development scenario, the maximum water yield supply reaches 73.27 mm, whereas the demand for water yield and carbon sequestration is lowest in the ecological protection scenario, at 59.89 mm and 14.92 t C·hm-2, respectively. (2) The trade-offs between water yield and soil conservation as well as between water yield and carbon sequestration are minimized in the ecological protection scenario, indicating low synergy intensity for both the supply and demand of these services. (3) In the ecological protection and carbon peak scenarios, the supply-demand ratio for water yield and carbon sequestration is positive, whereas the supply-demand ratios for soil conservation are consistent across all scenarios. Therefore, future development within the Shanxi section of the Yellow River Basin should prioritize optimizing land use, balancing ecological safety with economic and social progress, achieving a “carbon peak”, and establishing a foundation for the goal of “carbon neutrality”.

参考文献

[1] Costanza R, Groot R D, Braat L, et al. Twenty years of ecosystem services: How far have we come and how far do we still need to go?[J]. Ecosystem Services, 2017, 28: 1-16.
[2] 李双成, 张才玉, 刘金龙, 等. 生态系统服务权衡与协同研究进展及地理学研究议题[J]. 地理研究, 2013, 32(8): 1379-1390.
  [ Li Shuangcheng, Zhang Caiyu, Liu Jinlong, et al. The tradeoffs and synergies of ecosystem services: Research progress, development trend, and themes of geography[J]. Geographical Research, 2013, 32(8): 1379-1390. ]
[3] 申嘉澍, 李双成, 梁泽, 等. 生态系统服务供需关系研究进展与趋势展望[J]. 自然资源学报, 2021, 36(8): 1909-1922.
  [ Shen Jiashu, Li Shuangcheng, Liang Ze, et al. Research progress and prospect for the relationships between ecosystem services supplies and demands[J]. Journal of Natural Resources, 2021, 36(8): 1909-1922. ]
[4] Aryal K, Maraseni T, Apan A. How much do we know about trade-offs in ecosystem services? A systematic review of empirical research observations[J]. Science of the Total Environment, 2022, 806: 151229, doi: 10.1016/j.scitotenv.2021.151229.
[5] 黄强, 陈田田, 王强, 等. 喀斯特山区生态系统服务权衡关系分异特征及生态安全格局识别——以贵州省为例[J]. 地理科学, 2024, 44(6): 1080-1091.
  [ Huang Qiang, Chen Tiantian, Wang Qiang, et al. Differentiation characteristics of trade-off on ecosystem services and identification of ecological security pattern in karst mountainous areas: A case study of Guizhou Province[J]. Scientia Geographica Sinica, 2024, 44(6): 1080-1091. ]
[6] 荔童, 梁小英, 张杰, 等. 基于贝叶斯网络的从石羊河流域生态系统服务权衡与协同关系研究生态系统服务权衡协同关系及其驱动因子分析——以陕北黄土高原为例[J]. 生态学报, 2023, 43(16): 6758-6771.
  [ Li Tong, Liang Xiaoying, Zhang Jie, et al. Ecosystem service trade-off and synergy relationship and its driving factor analysis based on Bayesian belief network: A case study of the Loess Plateau in northern Shaanxi Province[J]. Acta Ecologica Sinica, 2023, 43(16): 6758-6771. ]
[7] Mooney H A, Duraiappah A, Larigauderie A. Evolution of natural and social science interactions in global change research programs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 3665-3672.
[8] 智烈慧, 李心, 马田田, 等. 辽河三角洲土地利用变化轨迹、驱动过程及生态系统服务时空演变[J]. 环境科学学报, 2022, 42(1): 141-150.
  [ Zhi Liehui, Li Xin, Ma Tiantian, et al. The spatiotemporal evolution of land use trajectories, drivers and the ecosystem services in Liao River Delta in the past four decades[J]. Acta Scientiae Circumstantiae, 2022, 42(1): 141-150. ]
[9] 王晓萌, 潘佩佩, 王晓旭, 等. 基于土地利用的河北省生态系统服务权衡/协同关系研究[J]. 地理与地理信息科学, 2021, 37(1): 80-88.
  [ Wang Xiaomeng, Pan Peipei, Wang Xiaoxu, et al. Research on ecosystem service trade-off/synergy relationship in Hebei Province based on land use[J]. Geography and Geo-information Science, 2021, 37(1): 80-88. ]
[10] Gong S X, Zhang Y H, Pu X, et al. Assessing and predicting ecosystem services and their trade-offs/synergies based on land use change in Beijing-Tianjin-Hebei region[J]. Sustainability, 2024, 16(13): 5609, doi: 10.3390/su16135609.
[11] Polasky S, Nelson E, Pennington D, et al. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota[J]. Environmental & Resource Economics, 2011, 48(2): 219-242.
[12] López E, Bocco G, Mendoza M, et al. Predicting land-cover and land-use change in the urban fringe: A case in Morelia City, Mexico[J]. Landscape & Urban Planning, 2001, 55(4): 271-285.
[13] 赵恒谦, 刘哿, 杨姿涵, 等. 2000—2020年辽宁省生态系统服务评估与多情景预测[J]. 环境科学, 2024, 45(7): 4137-4151.
  [ Zhao Hengqian, Liu Ge, Yang Zihan, et al. Ecosystem services assessment and multi-scenario prediction in Liaoning Province from 2000 to 2020[J]. Environmental Science, 2024, 45(7): 4137-4151. ]
[14] 范昕. 黄河上游生态脆弱区土地利用/覆被变化及生态系统服务权衡与协同研究[D]. 武汉: 中国地质大学, 2022.
  [ Fan Xin. Land use/cover change and the tradeoff and synergy of ecosystem services in ecologically fragile regions of upper Yellow River: A case study in Hehuang Valley[D]. Wuhan: China University of Geosciences, 2022. ]
[15] 陈绮桐, 林锦耀. 多情景下珠江三角洲地区土地利用变化对生态系统服务的影响预测[J]. 生态与农村环境学报, 2024, 40(5): 612-621.
  [ Chen Qitong, Lin Jinyao. Prediction of the impact of land use change on ecosystem service in the Pearl River Delta under different scenarios[J]. Journal of Ecology and Rural Environment, 2024, 40(5): 612-621. ]
[16] 侯晋星, 潘换换, 杜自强, 等. 山西黄河流域水生态系统服务时空分析[J]. 干旱区地理, 2024, 47(6): 1047-1060.
  [ Hou Jinxing, Pan Huanhuan, Du Ziqiang, et al. Spatiotemporal analysis of water ecosystem services of the Yellow River Basin in Shanxi Province[J]. Arid Land Geography, 2024, 47(6): 1047-1060. ]
[17] 张世栋, 李明玉, 相恒星, 等. 辽河流域生态系统服务权衡与协同研究[J]. 延边大学农学学报, 2021, 43(1): 73-83.
  [ Zhang Shidong, Li Mingyu, Xiang Hengxing, et al. Trade-offs and synergies of ecosystem services in the Liaohe River Basin[J]. Agricultural Science Journal of Yanbian University, 2021, 43(1): 73-83. ]
[18] 邓蕾. 黄土高原生态系统碳固持对植被恢复的响应机制[D]. 咸阳: 西北农林科技大学, 2014.
  [ Deng Lei. Responsing mechanism of ecosystem carbon sequestration benefits to vegetation restoration on the Loess Plateau of China[D]. Xianyang: Northwest A&F University, 2014. ]
[19] 张诗倩, 刘昕瑀, 杨晓, 等. 基于系统动力学的江西省需水量预测[J]. 宁夏大学学报(自然科学版), 2021, 42(3): 334-339, 345.
  [ Zhang Shiqian, Liu Xinyu, Yang Xiao, et al. Water demand prediction of Jiangxi Province based on system dynamics[J]. Journal of Ningxia University (Natural Science Edition), 2021, 42(3): 334-339, 345. ]
[20] Gu S, Fu B T, Thriveni T, et al. Coupled LMDI and system dynamics model for estimating urban CO2 emission mitigation potential in Shanghai, China[J]. Journal of Cleaner Production, 2019, 240: 118034, doi: 10.1016/j.jclepro.2019.118034.
[21] Lan J, Lei X D, He X, et al. Stand density, climate and biodiversity jointly regulate the multifunctionality of natural forest ecosystems in northeast China[J]. European Journal of Forest Research, 2023, 142(3): 493-507.
[22] Hong T, Yang C J. Temporal and spatial evolution of ecosystem service supply and demand in the Tibetan Plateau: Implications for land use patterns and relationships[J]. Polish Journal of Environmental Studies, 2024, 33(3): 2679-2691.
[23] Tian A, Wang Y H, Webb A A, et al. Water yield variation with elevation, tree age and density of larch plantation in the Liupan Mountains of the Loess Plateau and its forest management implications[J]. Science of the Total Environment, 2021, 752: 141752, doi: 10.1016/j.scitotenv.2020.141752.
[24] Ma S L, Xu M X. Assessing the sustainability impact of land-use changes and carbon emission intensity in the Loess Plateau[J]. Sustainability, 2024, 16(19): 8618, doi: 10.3390/su16198618.
[25] 喇蕗梦, 勾蒙蒙, 李乐, 等. 三峡库区生态系统服务权衡时空动态与情景模拟: 以秭归县为例[J]. 生态与农村环境学报, 2021, 37(11): 1368-1377.
  [ La Lumeng, Gou Mengmeng, Li Le, et al. Spatiotemporal dynamics and scenarios analysis on trade-offs between ecosystem service in Three Gorges Reservoir area: A case study of Zigui County[J]. Journal of Ecology and Rural Environment, 2021, 37(11): 1368-1377. ]
[26] Gu Y Y, Lin N F, Ye X, et al. Assessing the impacts of human disturbance on ecosystem services under multiple scenarios in karst areas of China: Insight from ecological conservation red lines effectiveness[J]. Ecological Indicators, 2022, 142: 109202, doi: 10.1016/j.ecolind.2022.109202.
[27] Shi M J, Wu H Q, Fan X, et al. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili River Valley, China[J]. Sustainability, 2021, 13(3): 1577, doi: 10.3390/su13031577.
[28] 刘华妍, 肖文发, 李奇, 等. 北京市生态系统服务时空变化与权衡分析[J]. 生态学杂志, 2021, 40(1): 209-219.
  [ Liu Huayan, Xiao Wenfa, Li Qi, et al. Spatiotemporal variations and trade-offs of ecosystem services in Beijing[J]. Chinese Journal of Ecology, 2021, 40(1): 209-219. ]
[29] 秦欢欢, 黄碧贤, 吴昊, 等. 基于SD模型和情景分析法的华北平原需水量预测[J]. 节水灌溉, 2022(2): 59-65.
  [ Qin Huanhuan, Huang Bixian, Wu Hao, et al. Water demand prediction in North China Plain based on SD model and scenario analysis method[J]. Water Saving Irrigation, 2022(2): 59-65. ]
[30] Bai Y, Wong C P, Jiang B, et al. Developing China’s ecological redline policy using ecosystem services assessments for land use planning[J]. Nature Communication, 2018, 9(1): 3034, doi: 10.1038/s41467-018-05306-1.
[31] Tao Y, Tao Q, Sun, X, et al. Mapping ecosystem service supply and demand dynamics under rapid urban expansion: A case study in the Yangtze River Delta of China[J]. Ecosystem Services, 2022, 56: 101448, doi: 10.1016/j.ecoser.2022.101448.
[32] 刘海龙, 丁娅楠, 王跃飞, 等. 山西省城镇化与生态系统服务时空相关性及空间效应分析[J]. 水土保持学报, 2022, 36(1): 124-134.
  [ Liu Hailong, Ding Yanan, Wang Yuefei, et al. Analysis of temporal-spatial correlation and spatial effect between urbanization and ecosystem services in Shanxi Province[J]. Journal of Soil and Water Conservation, 2022, 36(1): 124-134. ]
[33] 詹绍文, 李青青. 基于PLUS模型的城市土地利用及生态系统服务多情景模拟——以三门峡市为例[J]. 国土与自然资源研究, 2025(2): 41-47.
  [ Zhan Shaowen, Li Qingqing. Multi-scenario simulation of urban land use and ecosystem services based on the PLUS model: A case study of Sanmenxia City[J]. Territory & Natural Resources Study, 2025(2): 41-47. ]
文章导航

/