基于生态安全格局确定县域生物多样性保护的优先区域——以布尔津县为例
收稿日期: 2024-06-06
修回日期: 2024-11-05
网络出版日期: 2025-04-18
基金资助
第三次新疆综合科学考察项目(2021xjkk0902);国家自然科学基金(地区科学基金)项目(42461036)
Determining priority areas for county biodiversity conservation based on ecological security pattern: A case study of Burqin County
Received date: 2024-06-06
Revised date: 2024-11-05
Online published: 2025-04-18
生态安全是人类安全乃至人类生存的重要保障,近年来生物栖息地不断减少,生态问题愈发凸显,构建生态安全格局是保护生物多样性的有效途径。选取新疆布尔津县作为研究区,通过InVEST模型与PLUS模型分析并预测布尔津县2000—2030年的生境质量时空演变特征并识别生态源地,利用电路理论确定生态廊道的空间范围和生物多样性保护的关键区域,针对不同优先级的生态保护区选取最适生态廊道宽度,提出差异化保护策略。结果表明:(1) 2000—2020年布尔津县生境质量处于中等水平,平均生境质量指数为0.4978,总体呈先下降后略微上升趋势;2020—2030年布尔津县生境质量指数持续上升。(2) 研究识别出布尔津县生态源地1059.83 km2,建设源地684.26 km2,69条生态廊道以及42处生态夹点;根据两类源地扩张时耗费阻力突变点将研究区划分为不同的生态保护区并确定其保护时的优先次序,并利用新疆重要生态保护地数据对其进行修正。(3) 基于不同分区内野生动物种类分别选取宽度最适的生态廊道并确定其空间范围,最终提出立体生态差异化保护策略,为县域层面的生态保护与区域发展提供参考。
闫晓梅 , 王宏卫 , 罗魁 , 董康宁 , 郭瑞杰 , 郑旭东 . 基于生态安全格局确定县域生物多样性保护的优先区域——以布尔津县为例[J]. 干旱区地理, 2025 , 48(4) : 586 -598 . DOI: 10.12118/j.issn.1000-6060.2024.354
Ecological security is fundamental to human well-being and long-term sustainability. However, the ongoing degradation of biological habitats has intensified ecological challenges, highlighting the urgent need for effective biodiversity conservation strategies. This study examines Burqin County in Xinjiang, China, to develop an ecological security framework by analyzing habitat quality dynamics and identifying priority conservation areas. Using the InVEST and PLUS models, we evaluated the spatiotemporal evolution of habitat quality from 2000 to 2030 and mapped ecological source areas. Circuit theory was applied to delineate ecological corridors, ecological pinch points, and key biodiversity conservation zones. Based on optimal corridor widths and conservation priorities, differentiated protection strategies were proposed. The key findings are as follows: (1) From 2000 to 2020, habitat quality in Burqin County remained at a moderate level, with an average habitat quality index of 0.4978. The trend initially showed a decline, followed by slight recovery, while projections indicate a continuous improvement in habitat quality from 2020 to 2030. (2) The study identified 1059.83 km2 of ecological source areas, 684.26 km2 of construction source areas, 69 ecological corridors, and 42 ecological pinch points. Resistance thresholds during source area expansion were used to partition the region into distinct ecological protection zones with prioritized conservation levels. These results were cross-validated with data from Xinjiang’s significant ecological protection areas. (3) Zone-specific ecological corridor widths were determined by considering the spatial distribution of wildlife species, ensuring accurate delineation of their extents.
[1] | 李涛, 巩雅博, 戈健宅, 等. 基于电路理论的城市景观生态安全格局构建——以湖南省衡阳市为例[J]. 应用生态学报, 2021, 32(7): 2555-2564. |
[Li Tao, Gong Yabo, Ge Jianzhai, et al. Construction of urban landscape ecological security pattern based on circuit theory: A case study of Hengyang City, Hunan Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2555-2564.] | |
[2] | 张晓东, 赵志鹏, 赵银鑫, 等. 银川市景观生态风险评价与生态安全格局优化构建[J]. 干旱区地理, 2022, 45(5): 1626-1636. |
[Zhang Xiaodong, Zhao Zhipeng, Zhao Yinxin, et al. Landscape ecological risk assessment and ecological security pattern optimization construction in Yinchuan City[J]. Arid Land Geography, 2022, 45(5): 1626-1636.] | |
[3] | Herath H, Halwatura R U, Jayasingh G Y. Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy[J]. Urban Forestry & Urban Greening, 2018, 29: 212-222. |
[4] | Lewis A C. The changing face of urban air pollution[J]. Science, 2018, 359: 744-745. |
[5] | 翟天林, 王静, 金志丰, 等. 长江经济带生态系统服务供需格局变化与关联性分析[J]. 生态学报, 2019, 39(15): 5414-5424. |
[Zhai Tianlin, Wang Jing, Jin Zhifeng, et al. Change and correlation analysis of the supply-demand pattern of ecosystem services in the Yangtze River Economic Belt[J]. Acta Ecologica Sinica, 2019, 39(15): 5414-5424.] | |
[6] | 李新琪, 王永嘉, 徐涛. “十四五”新疆维吾尔自治区生态状况监测工作思考[J]. 干旱环境监测, 2020, 34(4): 187-192. |
[Li Xinqi, Wang Yongjia, Xu Tao. Overall consideration on ecological monitoring works of Xinjiang Uygur Autonomous Region during the 14th five-year plan period[J]. Arid Environmental Monitoring, 2020, 34(4): 187-192.] | |
[7] | 李洪庆, 杨瑀, 张俊红. 雅鲁藏布江山南宽谷流域生态安全格局构建[J]. 干旱区地理, 2023, 46(9): 1503-1513. |
[Li Hongqing, Yang Yu, Zhang Junhong. Construction of ecological security pattern in Shannan Wide Valley Basin of Yarlung Zangbo River[J]. Arid Land Geography, 2023, 46(9): 1503-1513.] | |
[8] | Secretariat of the Convention on Biological Diversity. Global biodiversity outlook 5[R]. Montreal: Secretariat of the Convention on Biological Diversity, 2020. |
[9] | 孙枫, 章锦河, 王培家, 等. 城市生态安全格局构建与评价研究: 以苏州市区为例[J]. 地理研究, 2021, 40(9): 2476-2493. |
[Sun Feng, Zhang Jinhe, Wang Peijia, et al. Construction and evaluation of urban ecological security pattern: A case study of Suzhou City[J]. Geographical Research, 2021, 40(9): 2476-2493.] | |
[10] | Zhang Y, Li X B, Song W. Determinants of cropland abandonment at the parcel, household and village levels in mountain areas of China: A multi-level analysis[J]. Land Use Policy, 2014, 41: 186-192. |
[11] | 朱琪, 袁泉, 于大炮, 等. 基于电路理论的东北森林带生态安全网络构建[J]. 生态学杂志, 2021, 40(11): 3463-3473. |
[Zhu Qi, Yuan Quan, Yu Dapao, et al. Construction of ecological security network of northeast China forest belt based on the circuit theory[J]. Chinese Journal of Ecology, 2021, 40(11): 3463-3473.] | |
[12] | 潘竟虎, 王云. 基于CVOR和电路理论的讨赖河流域生态安全评价及生态格局优化[J]. 生态学报, 2021, 41(7): 2582-2595. |
[Pan Jinghu, Wang Yun. Ecological security evaluation and ecological pattern optimization in Taolai River Basin based on CVOR and circuit theory[J]. Acta Ecologica Sinica, 2021, 41(7): 2582-2595.] | |
[13] | 陈南南, 康帅直, 赵永华, 等. 基于MSPA和MCR模型的秦岭(陕西段)山地生态网络构建[J]. 应用生态学报, 2021, 32(5): 1545-1553. |
[Chen Nannan, Kang Shuaizhi, Zhao Yonghua, et al. Construction of ecological network in Qinling Mountains of Shaanxi, China based on MSPA and MCR model[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1545-1553.] | |
[14] | Daniela T M, Luciano C J F, Eduarda S M, et al. Delimitation of ecological corridors between conservation units in the Brazilian cerrado using a GIS and AHP approach[J]. Ecological Indicators, 2020, 115: 106440, doi: 10.1016/j.ecolind.2020.106440. |
[15] | Reed F, Noss. Corridors in real landscapes: A reply to Simberloff and Cox[J]. Conservation Biology, 1987, 1(2): 159-164. |
[16] | Liu Z, Lin Y L, Bruno D M, et al. Heterogeneous landscapes of urban greenways in Shenzhen: Traffic impact, corridor width and land use[J]. Urban Forestry & Urban Greening, 2020, 55: 126785, doi: 10.1016/j.ufug.2020.126785. |
[17] | Hou Q, Du Y, Dong W, et al. Smart city oriented ecological corridor layout of Sanshui River Basin in arid area of Loess Plateau[J]. Sustainable Energy Technologies and Assessments, 2021, 44: 100993, doi: 10.1016/j.seta.2021.100993. |
[18] | Zhang L, Fu B, Lü Y, et al. Balancing multiple ecosystem services in conservation priority setting[J]. Landscape Ecology, 2015, 30: 535-546. |
[19] | Myer N. Threatened biotas: “Hot spots” in tropical forests[J]. Environmentalist, 1988, 8(3): 187-208. |
[20] | Wilson E O, Peter F M. Monitoring biological diversity for setting priorities in conservation[M]. Washington: National Academy Press, 1988, 227-230. |
[21] | Yang R, Cao Y, Hou S Y, et al. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets[J]. Science Advance, 2020, 6(37): eabc3436, doi: 10.1126/sciadv.abc3436. |
[22] | Wei Q Q, Halike A, Yao K X, et al. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models[J]. Ecological Indicators, 2022, 138: 108857, doi: 10.1016/j.ecolind.2022.108857. |
[23] | Huang X, Wang H, Shan L, et al. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity[J]. Ecological Indicators, 2021, 132: 108319, doi: 10.1016/j.ecolind.2021.108319. |
[24] | 高庆彦, 潘玉君, 刘化. 基于InVEST模型的大理州生境质量时空演化研究[J]. 生态与农村环境学报, 2021, 37(3): 402-408. |
[Gao Qingyan, Pan Yujun, Liu Hua. Spatial-temporal evolution of habitat quality in the Dali Bai Autonomous Prefecture based on the InVEST model[J]. Journal of Ecology and Rural Environment, 2021, 37(3): 402-408.] | |
[25] | Richard S, Rebecca C K, Spencer W, et al. InVEST3.14.3. User’s guide: Integrated valuation of environmental services and tradeoffs[M]. Stanford: The Natural Capital Project, 2021. |
[26] | 樊影, 王宏卫, 杨胜天, 等. 基于生境质量和生态安全格局的阿勒泰地区生态保护关键区域识别[J]. 生态学报, 2021, 41(19): 7614-7626. |
[Fan Ying, Wang Hongwei, Yang Shengtian, et al. Identification of ecological protection crucial areas in Altay Prefecture based on habitat quality and ecological security pattern[J]. Acta Ecologica Sinica, 2021, 41(19): 7614-7626.] | |
[27] | Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning[J]. Landscape and Urban Planning, 1992, 23(1): 1-16. |
[28] | 郝月, 张娜, 杜亚娟, 等. 基于生境质量的唐县生态安全格局构建[J]. 应用生态学报, 2019, 30(3): 1015-1024. |
[Hao Yue, Zhang Na, Du Yajuan, et al. Construction of ecological security pattern based on habitat quality in Tang County, Hebei, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 1015-1024.] | |
[29] | Dong K N, Wang H W, Luo K, et al. The use of an optimized grey multi-objective programming-PLUS model for multi-scenario simulation of land use in the Weigan-Kuche River oasis, China[J]. Land, 2024, 13(6): 802, doi: 10.3390/land13060802. |
[30] | 张晓瑶, 张潇, 李冬花, 等. 城市土地利用变化对生态系统服务价值影响的多情景模拟——以深圳市为例[J]. 生态学报, 2022, 42(6): 2086-2097. |
[Zhang Xiaoyao, Zhang Xiao, Li Donghua, et al. Multi-scenario simulation of the impact of urban land use change on ecosystem service value in Shenzhen[J]. Acta Ecologica Acta Ecologica Sinica, 2022, 42(6): 2086-2097.] | |
[31] | 袁贞贞, 王秋红, 王勇, 等. 多情景模拟下重庆市土地利用变化对生态系统健康的影响[J]. 生态学报, 2023, 43(20): 8279-8291. |
[Yuan Zhengzheng, Wang Qiuhong, Wang Yong, et al. Impacts of land use change on ecosystem health in Chongqing under multi-scenario[J]. Acta Ecologica Sinica, 2023, 43(20): 8279-8291.] | |
[32] | 胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2022, 45(4): 1125-1136. |
[Hu Feng, Zhang Yan, Guo Yu, et al. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions[J]. Arid Land Geography, 2022, 45(4): 1125-1136.] | |
[33] | 马亚兄. 基于生境质量的黄土丘陵区生态安全格局构建[D]. 兰州: 西北师范大学, 2021. |
[Ma Yaxiong. Construction of ecological security pattern in loess hilly region based on habitat quality: Take Lanzhou City as an example[D]. Lanzhou: Northwest Normal University, 2021.] | |
[34] | Luo K, Wang H W, Yan X M, et al. Integrating CVOR and circuit theory models to construct and reconstruct ecological networks: A case study from the Tacheng-Emin Basin, China[J]. Ecological Indicators, 2024, 165: 112170, doi: 10.1016/j.ecolind.2024.112170. |
[35] | 宋利利, 秦明周. 整合电路理论的生态廊道及其重要性识别[J]. 应用生态学报, 2016, 27(10): 3344-3352. |
[Song Lili, Qin Mingzhou. Identification of ecological corridors and its importance by integrating circuit theory[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3344-3352.] | |
[36] | 朱强, 俞孔坚, 李迪华. 景观规划中的生态廊道宽度[J]. 生态学报, 2005, 25(9): 2406-2412. |
[Zhu Qiang, Yu Kongjian, Li Dihua. The width of ecological corridor in landscape planning[J]. Acta Ecologica Sinica, 2005, 25(9): 2406-2412.] |
/
〈 |
|
〉 |