地表过程研究

基于分形理论的陇东地区沟谷发育特征及影响因素分析

  • 唐延东 ,
  • 臧翠萍 ,
  • 于云鹏 ,
  • 余青霖
展开
  • 四川工程职业技术大学建筑工程学院,四川 德阳 618000
唐延东(1985-),男,汉族,硕士,副教授,主要从事岩土工程和工程地质方面的研究. E-mail: tyd1201@126.com
臧翠萍(1987-),女,汉族,硕士,讲师,主要从事土木工程和工程管理方面的研究. E-mail: 115497513@163.com

收稿日期: 2024-04-29

  修回日期: 2024-07-30

  网络出版日期: 2025-02-25

基金资助

四川省自然科学基金(2023NSFSC0789)

Developmental characteristics and influencing factors of gullies based on fractal theory in eastern Gansu Province

  • TANG Yandong ,
  • ZANG Cuiping ,
  • YU Yunpeng ,
  • YU Qinglin
Expand
  • School of Architectural Engineering, Sichuan Polytechnic University, Deyang 618000, Sichuan, China

Received date: 2024-04-29

  Revised date: 2024-07-30

  Online published: 2025-02-25

摘要

黄土高原因其易被流水侵蚀的土壤特性,经常遭受沟谷溯源侵蚀而造成耕地面积减小并诱发地质灾害等一系列问题。基于高精度遥感影像和DEM,提取了沟谷网络及其特征参数,分析了沟谷之间的相互影响关系和发育特征。通过计算流域沟谷的盒维数和沟沿线的边界维数,对沟谷侵蚀发育的复杂程度进行了综合评价。同时,基于盒维数和边界维数,研究了沟谷流域的发育过程及其侵蚀的空间分布规律。研究发现:(1) 在发育次一级的沟谷时,沟谷顺流方向单侧有110°的可发育区间。(2) a流域的侵蚀发育程度最复杂,b次之,c最小;b流域的沟沿线最复杂,a次之,c最简单;c流域的沟谷侵蚀发育程度从SW向NE递增。(3) 地质构造是影响着沟谷发育程度的主要因素之一;高程越高,黄土厚度越薄,植被越稀少,沟谷侵蚀发育程度越高。研究结果可为陇东地区水土保持治理提供指导建议。

本文引用格式

唐延东 , 臧翠萍 , 于云鹏 , 余青霖 . 基于分形理论的陇东地区沟谷发育特征及影响因素分析[J]. 干旱区地理, 2025 , 48(2) : 223 -233 . DOI: 10.12118/j.issn.1000-6060.2024.262

Abstract

The Loess Plateau, characterized by soil highly susceptible to erosion from flowing water, frequently experiences gully backward erosion, leading to reduced arable land and a series of geologic hazards. Using high-resolution remote sensing imagery and DEM, the gully network and its characteristic parameters were extracted to analyze the interaction relationships and development characteristics of gullies. The complexity of gully erosion and development was comprehensively evaluated through the box dimension of the watershed gully and the boundary dimension of the gully ridgeline. Additionally, the development process and spatial distribution patterns of erosion in the gully watershed were examined based on the box and boundary dimensions. The results demonstrated that: (1) In secondary-level valley development, there exists a 110° developable interval on one downstream side. (2) Watershed b exhibits the most complex erosion development, followed by watershed a, and then watershed c; along valley slopes, watershed b has the most intricate boundary dimension, followed by watershed a, and then watershed c. The degree of watershed gully erosion increases from southwest to northeast for watershed c. (3) Geological structure significantly influences the degree of gully development, with higher elevation, thinner loess thickness, sparser vegetation, and greater gully erosion. This study offers guiding recommendations for soil and water conservation management in eastern Gansu Province.

参考文献

[1] 马乃喜. 黄土地貌演化与土壤侵蚀关系的分析[J]. 水土保持通报, 1996(2): 6-10.
  [Ma Naixi. Relationship between loess geomorphic evolution and soil erosion[J]. Bulletin of Soil and Water Conservation, 1996(2): 6-10. ]
[2] 马新中, 陆中臣, 金德生. 流域地貌系统的侵蚀演化与耗散结构[J]. 地理学报, 1993, 60(4): 367-376.
  [Ma Xinzhong, Lu Zhong chen, Jin Desheng. Evolution and pissipative structure in the drainage-geomorphic system[J]. Acta Geographica Sinica, 1993, 60(4): 367-376. ]
[3] Xiong L Y, Tang G A, Li F Y, et al. Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface[J]. Geomorphology, 2014, 209: 18-26.
[4] Xiong L Y, Ang G A, Strobl J, et al. Paleotopographic controls on loess deposition in the Loess Plateau of China[J]. Earth Surface Processes and Landforms, 2016, 41(9): 1155-1168.
[5] 江忠善, 王志强, 刘志. 黄土丘陵区小流域土壤侵蚀空间变化定量研究[J]. 土壤侵蚀与水土保持学报, 1996(1): 1-9.
  [Jiang Zhongshan, Wang Zhiqiang, Liu Zhi. Quantitative study on spatial variation of soil erosion in a small watershed in the loess hilly region[J]. Journal of Soil Erosion and Soil and Water Conservation, 1996(1): 1-9. ]
[6] 姚文波. 历史时期董志塬地貌演变过程及其成因[D]. 西安: 陕西师范大学, 2009.
  [Yao Wenbo. Evolution process and causes of Dongzhiyuan geomorphology in historical period[D]. Xi’an: Shaanxi Normal University, 2009. ]
[7] 肖晨超. 基于DEM的黄土地貌沟沿线特征研究[D]. 南京: 南京师范大学, 2007.
  [Xiao Chenchao. Study on gully edge characteristics of Loess Landform based on DEM[D]. Nanjing: Nanjing Normal University, 2007. ]
[8] 龙毅, 周侗, 汤国安, 等. 典型黄土地貌类型区的地形复杂度分形研究[J]. 山地学报, 2007, 25(4): 385-392.
  [Long Yi, Zhou Tong, Tang Guo’an, et al. Research on terra in complexity of several typical regions of Loess Landform based on fractal method[J]. Journal of Mountain Science, 2007, 25(4): 385-392. ]
[9] 袁爽, 许强, 赵宽耀, 等. 陇东地区残塬分布规律及影响因素分析[J]. 人民长江, 2019, 50(8): 63-69, 108.
  [Yuan Shuang, Xu Qiang, Zhao Kuanyao, et al. Analysis on distribution law and influencing factors of residual tableland in east Gansu Province[J]. Yangtze River, 2019, 50(8): 63-69, 108. ]
[10] 张丽萍, 马志正. 流域地貌演化的不同阶段沟壑密度与切割深度关系研究[J]. 地理研究, 1998, 17(3): 273-278.
  [Zhang Liping, Ma Zhizheng. The research on the relation between gully density and cutting depth in different drainage landform evolution periods[J]. Geographical Research, 1998, 17(3): 273-278. ]
[11] 李军锋, 李天文, 陈正江, 等. 基于DEM的黄土高原丘陵沟壑区沟谷网络节点研究[J]. 干旱区地理, 2005, 28(3): 386-391.
  [Li Junfeng, Li Tianwen, Chen Zhengjiang, et al. Research on channel network nodes based on DEM in hill and gully area of the Loess Plateau[J]. Arid Land Geography, 2005, 28(3): 386-391. ]
[12] 刘秉正, 吴发启. 黄土塬区沟谷侵蚀与发展[J]. 西北林学院学报, 1993(2): 7-15.
  [Liu Bingzheng, Wu Faqi. Gully erosion and its development on Loess Plateau[J]. Journal of Northwest Forestry College, 1993(2): 7-15. ]
[13] 何雨, 贾铁飞, 李容全. 黄土丘陵区沟谷发育及其稳定性评价[J]. 干旱区地理, 1999, 22(2): 64-70.
  [He Yu, Jia Tiefei, Li Rongquan. Development of gullies and evaluation on their stability in the loess hill region[J]. Arid Land Geography, 1999, 22(2): 64-70. ]
[14] 景可. 黄土高原的新构造运动对侵蚀影响的研究[J]. 水土保持通报, 1982(6): 10-14.
  [Jing Ke. Study on the influence of neotectonic movement on erosion in the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 1982(6): 10-14. ]
[15] 王辉, 王天明, 杨明博, 等. 基于航片的黄土高原丘陵沟壑区沟谷侵蚀定量监测[J]. 应用生态学报, 2008, 19(1): 127-132.
  [Wang Hui, Wang Tianming, Yang Mingbo, et al. Quantitative monitoring of gully erosion in hilly-gully area of Loess Plateau based on aerial images[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 127-132. ]
[16] 张婷. 基于DEM的流域沟谷网络尺度特征及尺度分解[D]. 南京: 南京师范大学, 2008.
  [Zhang Ting. Scale characteristics and decomposition of gully network in watershed based on DEM[D]. Nanjing: Nanjing Normal University, 2008. ]
[17] Beneda J. Fractal structure of the Kashubian hydrographic system[J]. Journal of Hydrology, 2013(488): 48-54.
[18] 蔡凌雁, 汤国安, 熊礼阳, 等. 基于DEM的陕北黄土高原典型地貌分形特征研究[J]. 水土保持通报, 2014, 34(3): 141-144, 329.
  [Cai Lingyan, Tang Guo’an, Xiong Liyang, et al. An analysis on fractal characteristics of typical landform patterns in northern Shaanxi Loess Plateau based on DEM[J]. Bulletin of Soil and Water Conservation, 2014, 34(3): 141-144, 329. ]
[19] 陶象武. 基于GIS的流域地貌形态分形空间变异特征研究[D]. 北京: 中国地质大学(北京), 2012.
  [Tao Xiangwu. A study on spatial variation characters of geomorphologic fractal in river watershed based on GIS[D]. Beijing: China University of Geosciences (Beijing), 2012. ]
[20] 苟娇娇, 王飞, 罗明良, 等. 基于DEM的黄土高原沟谷节点分形特征研究[J]. 水土保持学报, 2016, 30(3): 109-114.
  [Gou Jiaojiao, Wang Fei, Luo Mingliang, et al. Fractal characteristics of channel junctions(CJs) based on DEM[J]. Journal of Soil and Water Conservation, 2016, 30(3): 109-114. ]
[21] 崔灵周, 李占斌, 朱永清, 等. 流域地貌分形特征与侵蚀产沙定量耦合关系试验研究[J]. 水土保持学报, 2006, 20(2): 1-4, 9.
  [Cui Lingzhou, Li Zhanbin, Zhu Yongqing, et al. Experimental study on quantitative coupling relationship between topographic fractal feature and sediment yield in small watershed[J]. Journal of Soil and Water Conservation, 2006, 20(2): 1-4, 9. ]
[22] 张建兴, 马孝义, 赵文举, 等. 黄土高原重点流域河网分形特征研究[J]. 泥沙研究, 2008(5): 9-14.
  [Zhang Jianxing, Ma Xiaoyi, Zhao Wenju, et al. Analysis on fractal characteristics of river networks of key watersheds in the Loess Plateau[J]. Journal of Sediment Research, 2008(5): 9-14. ]
[23] 朱永清. 黄土高原典型流域地貌形态分形特征与空间尺度转换研究[D]. 西安: 西安理工大学, 2006.
  [Zhu Yongqing. Research on fractal characters of geomorphology and space-scale conversion in typical watershed on the Loess Plateau[D]. Xi’an: Xi’an University of Technology, 2006. ]
[24] Qin Z L, Wang J X, Lu Y. Multifractal characteristics analysis based on slope distribution probability in the Yellow River Basin, China[J]. ISPRS International Journal of Geo-information, 2021, 10(5): 337, doi: 10.3390/ijgi10050337.
[25] Meng X M, Zhang P J, Li J, et al. The linkage between box-counting and geomorphic fractal dimensions in the fractal structure of river networks: The junction angle[J]. Hydrology Research, 2020, 51(6): 1397-1408.
[26] 马煜栋, 杨帅, 韩静, 等. 陕西榆林地区无定河流域淤地坝遥感解译[J]. 干旱区地理, 2022, 45(3): 786-791.
  [Ma Yudong, Yang Shuai, Han Jing, et al. Remote sensing interpretation of check dams in Wuding River Basin in Yulin area of Shaanxi Province[J]. Arid Land Geography, 2022, 45(3): 786-791. ]
[27] 王崔林. 黄土董志塬沟谷侵蚀发育空间分异特征及其综合治理模式研究[D]. 成都: 成都理工大学, 2020.
  [Wang Cuilin. Study on the gully spatial differentiation characteristics and comprehensive control mode of Dongzhiyuan area in the Loess Platea[D]. Chengdu: Chengdu University of Technology, 2020. ]
[28] Kou P L, Xu Q, Yunus A P, et al. Landslide-controlled soil erosion rate in the largest tableland on the Loess Plateau, China[J]. Human Ecological Risk Assessment: An International Journal, 2020, 26: 2478-2499.
[29] 袁爽, 许强, 赵宽耀, 等. 基于统计学的陇东地区沟谷分布及演化研究[J]. 水土保持通报, 2020, 40(5): 172-180.
  [Yuan Shuang, Xu Qiang, Zhao Kuanyao, et al. Gully distribution and evolution in east Gansu Province based on statistics[J]. Bulletin of Soil and Water Conservation, 2020, 40(5): 172-180. ]
[30] Mandelbrot B B. The fractal geometry of nature[M]. New York: W. H. Freeman & Co, 1982.
[31] Krummel J R, Gardner R H, Sugihara G, et al. Landscape patterns in a disturbed environment[J]. Oikos, 1987, 48(3): 321-324.
[32] 姜琳, 王清晨, 王香增, 等. 鄂尔多斯盆地东南部中生界地层节理发育特征与古应力场[J]. 岩石学报, 2013, 29(5): 1774-1790.
  [Jiang Lin, Wang Qingchen, Wang Xiangzeng, et al. Joint development and paleostress field in Mesozoic strata of the southeastern Ordos Basin[J]. Acta Petrologica Sinica, 2013, 29(5): 1774-1790. ]
[33] 崔帅, 许强, 袁爽, 等. 基于组合熵权RSR法的董志塬沟谷发育评价[J]. 干旱区研究, 2023, 40(3): 481-491.
  [Cui Shuai, Xu Qiang, Yuan Shuang, et al. Evaluation of Dongzhi Loess Plateau Gully development based on combined entropy weight Rank-Sum Ratio method[J]. Arid Zone Research, 2023, 40(3): 481-491. ]
[34] 张岳桥, 廖昌珍. 晚中生代—新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质, 2006, 33(1): 28-40.
  [Zhang Yueqiao, Liao Changzhen. Transition of the Late Mesozoic-Cenozoic tectonic regimes and modification of the Ordos Basin[J]. Geology in China, 2006, 33(1): 28-40. ]
[35] 张岳桥, 施炜, 廖昌珍, 等. 鄂尔多斯盆地周边断裂运动学分析与晚中生代构造应力体制转换[J]. 地质学报, 2006, 80(5): 639-647.
  [Zhang Yueqiao, Shi Wei, Liao Changzhen, et al. Fault kinematic analysis and change in Late Mesozoic tectonic stress regimes in the peripheral zones of the Ordos Basin, north China[J]. Acta Geologica Sinica, 2006, 80(5): 639-647. ]
[36] 赵卫东, 王淑琴, 田剑, 等. 基于势能信息熵的黄土小流域地貌演化特征[J]. 干旱区地理, 2023, 46(1): 65-75.
  [Zhao Weidong, Wang Shuqin, Tian Jian, et al. Geomorphic evolution characteristics of small loess watersheds based on potential energy information entropy[J]. Arid Land Geography, 2023, 46(1): 65-75. ]
[37] 程瑛, 宋兴宇, 付正旭, 等. 近60 a黄河上游流域不同强度降水及大气湿润指数变化的新特征[J]. 干旱区地理, 2024, 47(8): 1327-1337.
  [Cheng Ying, Song Xingyu, Fu Zhengxu, et al. New characteristics of various intensity precipitation and atmospheric humidity index in the upper reaches of the Yellow River in recent 60 years[J]. Arid Land Geography, 2024, 47(8): 1327-1337. ]
文章导航

/