收稿日期: 2024-03-18
修回日期: 2024-06-11
网络出版日期: 2024-12-03
基金资助
新疆维吾尔自治区面上项目(2022D01A348);第三次新疆科学考察-昆仑山北坡水资源开发潜力及利用途径科学考察项目(2021xjkk0100)
Characteristics of flood change in alpine watershed on the northern slope of Kunlun Mountains
Received date: 2024-03-18
Revised date: 2024-06-11
Online published: 2024-12-03
洪水作为最具破坏力的自然灾害之一,在全球变暖背景下,高海拔山区洪水发生的强度和时间已经发生了显著变化,对人类社会和生态系统造成了深远的影响。因此,利用MissForest方法填补昆仑山北坡6大流域的出山口日流量序列,分析6条源流6个出山口站点1961—2022年的洪水强度、发生时间、起涨消退时间以及年最大洪水日平均流量的变化趋势。结果表明:(1)97%的年最大1日流量(AMF)事件发生在夏季,乌鲁瓦提和同古孜洛克站的AMF呈增加趋势,而皮山、策勒、努努买买提兰干和且末站呈减少趋势,除皮山和乌鲁瓦提站外,其余站点AMF变化均显著。所有站点的春季最大1日流量(AMFSp)均呈增加趋势,其中,乌鲁瓦提、同古孜洛克和努努买买提兰干站显著增加。洪水发生时间方面,除皮山站的年最大1日流量发生的日期(AMFD)呈现出显著延迟趋势外,其余5个站点的AMFD显示出不显著的提前趋势;对于春季最大1日流量发生的日期(AMFDSp),6个站点均呈现出不显著提前的趋势。(2)在洪水起涨时间上,同古孜洛克和且末站延长,皮山等4个站点缩短;洪水消退时间上,皮山和策勒站延长,其他站点缩短,整体变化趋势不显著。年最大洪水日平均流量方面,皮山站显著增加,努努买买提兰干和且末站显著减少,其他站点减少趋势不显著。研究成果对提升干旱区水文生态效益、防洪减灾及区域水管理和灾害风险评估具有重要意义。
关键词: MissForest; 最大1日流量; 洪水过程; 昆仑山北坡
仇泽炜 , 方功焕 , 陈亚宁 , 朱成刚 , 梁文婷 , 邸彦峰 , 吕浩东 . 昆仑山北坡高山流域洪水变化特征[J]. 干旱区地理, 2024 , 47(11) : 1816 -1827 . DOI: 10.12118/j.issn.1000-6060.2024.175
Flooding is one of the most devastating natural disasters, and under the influence of global warming, the magnitude and timing of floods in high-altitude mountain regions have experienced notable changes, significantly affecting human societies and ecosystems. This study employs the MissForest algorithm to impute daily discharge data for six mountain passes on the northern slope of the Kunlun Mountains, Xinjiang, China, analyzing trends in flood magnitude, timing, rise and recede durations for six source streams and mountain passes from 1961 to 2022, as well as the daily average annual maximum flood discharge. The key findings are as follows: (1) 97% of the annual maximum 1-day flow (AMF) events occur during the summer season. The AMF at Wuluwati and Tongguziluoke stations shows an increasing trend, while Pishan, Qira, Nunumaimaitilangan, and Qiemo stations exhibit a decreasing trend. Changes in AMF are statistically significant at all stations except Pishan and Wuluwati. The spring maximum 1-day flow (AMFSp) at all stations shows an increasing trend, with the most pronounced increases at Wuluwati, Tongguziluoke, and Nunumaimaitilangan stations. Regarding flood timing, the annual maximum 1-day flow date (AMFD) at five stations (excluding Pishan) exhibits an insignificant trend toward earlier occurrences. For the spring maximum 1-day flow date (AMFDSp), none of the six stations show a significant trend toward earlier timing. (2) Concerning the rise time of flooding, Tongguziluoke and Qiemo stations experienced an extension, while the other four stations showed a reduction. For the recede time of floods, Pishan and Qira stations have extended durations, whereas the other stations have shorter recede times, with no significant overall trend. The average daily discharge during the maximum flood has significantly increased at Pishan Station, significantly decreased at Nunumaimaitilangan and Qiemo stations, and has shown no significant change at the other stations. These findings are crucial for improving hydrological and ecological management, flood mitigation, disaster reduction, regional water management, and disaster risk assessment in arid regions.
[1] | Dottori F, Szewczyk W, Ciscar J C, et al. Increased human and economic losses from river flooding with anthropogenic warming[J]. Nature Climate Change, 2018, 8: 781-786. |
[2] | Alifu H, Hirabayashi Y, Imada Y, et al. Enhancement of river flooding due to global warming[J]. Scientific Reports, 2022, 12(1): 20687, doi: 10.1038/s41598-022-25182-6. |
[3] | IPCC. Climate change 2022: Mitigation of climate change[R]. Cambridge: IPCC, 2022. |
[4] | Tabari H. Climate change impact on flood and extreme precipitation increases with water availability[J]. Scientific Reports, 2020, 10(1): 13768, doi: 10.1038/s41598-020-74038-4. |
[5] | Lukas G, Julien B, Do H X, et al. Globally observed trends in mean and extreme river flow attributed to climate change[J]. Science, 2021, 371(6534): 1159-1162. |
[6] | Nsaaer N, Naresh D. Recent trends in the frequency and duration of global floods[J]. Earth System Dynamics, 2018, 9(2): 757-783. |
[7] | Zhang S L, Ahou L M, Yang Y T, et al. Reconciling disagreement on global river flood changes in a warming climate[J]. Nature Climate Change, 2022, 12: 1160-1167. |
[8] | Fang G H, Yang J, Li Z, et al. Shifting in the global flood timing[J]. Scientific Reports, 2022, 12(1): 18853, doi: 10.1038/s41598-022-23748-y. |
[9] | Han J, Liu Z, Woods R, et al. Streamflow seasonality in a snow-dwindling world[J]. Nature, 2024, 629(8014): 1075-1081. |
[10] | Do H X, Zhao F, Westra S, et al. Historical and future changes in global flood magnitude-evidence from a model-observation investigation[J]. Hydrology and Earth System Sciences, 2020, 24(3): 1543-1564. |
[11] | Chou C, Chiang J C H, Lan C W, et al. Increase in the range between wet and dry season precipitation[J]. Nature Geoscience, 2013, 6(4): 263-267. |
[12] | Wasko C, Guo D L, Ho M, et al. Diverging projections for flood and rainfall frequency curves[J]. Journal of Hydrology, 2023, 620: 129403, doi: 10.1016/j.jhydrol.2023.129403. |
[13] | Li D F, Lu X X, Walling D E, et al. High Mountain Asia hydropower systems threatened by climate-driven landscape instability[J]. Nature Geoscience, 2022, 15(7): 520-530. |
[14] | Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5(5): 424-430. |
[15] | Zhang Q, Gu X H, Singh V P, et al. Magnitude, frequency and timing of floods in the Tarim River Basin, China: Changes, causes and implications[J]. Global and Planetary Change, 2016, 139: 44-55. |
[16] | Fang G H, Li Z, Yang J, et al. Changes in flooding in the alpine catchments of the Tarim River Basin, Central Asia[J]. Journal of Flood Risk Management, 2023, 16(1): e12869, doi: 10.1111/jfr3.12869. |
[17] | Luo M, Meng F H, Liu T, et al. Multi-model ensemble approaches to assessment of effects of local climate change on water resources of the Hotan River Basin in Xinjiang, China[J]. Water, 2017, 9(8): 584, doi: 10.3390/w9080584. |
[18] | Wang N, Liu W B, Wang H, et al. Improving streamflow and flood simulations in three headwater catchments of the Tarim River based on a coupled glacier-hydrological model[J]. Journal of Hydrology, 2021, 603: 127048, doi: 10.1016/j.jhydrol.2021.127048. |
[19] | 陈亚宁. 中国西北干旱区水资源研究[M]. 北京: 科学出版社, 2014: 2-20. |
[Chen Yaning. Research on water resources in the arid region of northwest China[M]. Beijing: Science Press, 2014: 2-20.] | |
[20] | Sun P, Xiao M Z, Zhang Q, et al. Advance in hydrometeorological extremes research[J]. Journal of Wuhan University (Natural Science Edition), 2018, 64(1): 28-36. |
[21] | Zhang Q G, Zhang F, Kang S C, et al. Melting glaciers: Hidden hazards[J]. Science, 2017, 356(6337): 495-495. |
[22] | Wu Y P, Yin X W, Zhou G Y, et al. Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin[J]. Nature Communications, 2024, 15(1): 823, doi: 10.1038/s41467-023-44562-8. |
[23] | 吴素芬, 张国威. 新疆河流洪水与洪灾的变化趋势[J]. 冰川冻土, 2003, 25(2): 199-203. |
[Wu Sufen, Zhang Guowei. Preliminary approach on the floods and their calamity changing tendency in Xinjiang region[J]. Journal of Glaciology and Geocryology, 2003, 25(2): 199-203.] | |
[24] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111. |
[Wu Jia, Gao Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1102-1111.] | |
[25] | Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 2009, 26(4): 763-772. |
[26] | 吴立宗. 中国冰川编目信息系统[M]. 北京: 海洋出版社, 2004. |
[Wu Lizong. China glacier cataloging information system[M]. Beijing: China Ocean Press, 2004.] | |
[27] | 吴立宗. 中国第一次冰川编目数据集[DB/OL]. [2020-01-19]. http://cryosphere.casnw.net/portal/metadata/bec2973b-e989-4058-b768-5e7d2bed14ab. |
[Wu Lizong. Dataset of the first glacier inventory in China[DB/OL]. [2020-01-19]. http://cryosphere.casnw.net/portal/metadata/bec2973b-e989-4058-b768-5e7d2bed14ab.] | |
[28] | 刘时银, 郭万钦, 许君利. 中国第二次冰川编目数据集(V1.0)(2006—2011)[DB/OL]. [2019-10-11]. http://cryosphere.casnw.net/portal/metadata/6d44fd19-64d7-4af1-8e81-5fa717585b5b. |
[Liu Shiyin, Guo Wanqin, Xu Junli. The second glacier inventory dataset of China (version 1.0) (2006—2011)[DB/OL]. [2019-10-11]. http://cryosphere.casnw.net/portal/metadata/6d44fd19-64d7-4af1-8e81-5fa717585b5b.] | |
[29] | 刘时银, 张勇, 刘巧, 等. 气候变化对冰川影响与风险研究[M]. 北京: 科学出版社, 2017. |
[Liu Shiyin, Zhang Yong, Liu Qiao, et al. Impacts and risks of climate change on glaciers[M]. Beijing: Science Press, 2017.] | |
[30] | Guo W Q, Liu S Y, Xu J L, et al. The second Chinese glacier inventory: Data, methods and results[J]. Journal of Glaciology, 2015 61(226): 357-372. |
[31] | 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16. |
[Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16.] | |
[32] | 刘纪远, 匡文慧, 张增祥, 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J]. 地理学报, 2014, 69(1): 3-14. |
[Liu Jiyuan, Kuang Wenhui, Zhang Zengxiang, et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s[J]. Acta Geographica Sinica, 2014, 69(1): 3-14.] | |
[33] | Stekhoven D J, Buehlmann P. MissForest-non-parametric missing value imputation for mixed-type data[J]. Bioinformatics, 2012, 28(1): 112-118. |
[34] | Khampuengson T, Wang W. Novel methods for imputing missing values in water level monitoring data[J]. Water Resources Management, 2023, 37: 851-878. |
[35] | Lukas S, Markus D, Sophie B. Evaluating the performance of random forest for large-scale flood discharge simulation[J]. Journal of Hydrology, 2023, 590: 125531, doi: 10.1016/j.jhydrol.2020.125531. |
[36] | Huang H, Liang Z M, Li B Q, et al. Combination of multiple data-driven models for long-term monthly runoff predictions based on Bayesian model averaging[J]. Water Resources Management, 2019, 33(9): 3321-3338. |
[37] | Hristos T, Georgia P, Andreas L. Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms[J]. Neural Computing and Applications, 2021, 33(8): 3053-3068. |
[38] | Saini P, Nagpal B. Analysis of missing data and comparing the accuracy of imputation methods using wheat crop data[J]. Multimedia Tools and Applications, 2024, 83: 40393-40414. |
[39] | Hasan M K, Abu S M M, Jungpil S, et al. A lite-weight clinical features based chronic kidney disease diagnosis system using 1D convolutional neural network[C]// 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). Gazipur:IEEE, 2022: 1-5. |
[40] | Alkabbani H, Ramadan A, Zhu Q, et al. An improved air quality index machine learning-based forecasting with multivariate data imputation approach[J]. Atmosphere, 2022, 13(7): 1144, doi: 10.3390/atmos13071144. |
[41] | Jānis B, Inga R, Ezra H, et al. Assessing automated gap imputation of regional scale groundwater level data sets with typical gap patterns[J]. Journal of Hydrology, 2023, 620: 129424, doi: 10.1016/j.jhydrol.2023.129424. |
[42] | Tang F, Hemant I. Random forest missing data algorithms[J]. Atatistical Analysis and Data Mining, 2017, 10(6): 363-377. |
[43] | Arriagada P, Karelovic B, Link O. Automatic gap-filling of daily streamflow time series in data-scarce regions using a machine learning algorithm[J]. Journal of Hydrology, 2021, 598: 126454, doi: 10.1016/j.jhydrol.2021.126454. |
[44] | Zhou Y Y, Tang Q H, Zhao G. Gap infilling of daily streamflow data using a machine learning algorithm (MissForest) for impact assessment of human activities[J]. Journal of Hydrology, 2023, 627: 130404, doi: 10.1016/j.jhydrol.2023.130404. |
[45] | Moriasi D N, Arnold J G, Van L M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900. |
[46] | Knoben W J M, Freer J E, Woods R A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores[J]. Hydrology and Earth System Sciences, 2019, 23(10): 4323-4331. |
[47] | Feyen L, Dankers R. Impact of global warming on streamflow drought in Europe[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(17): D17116, doi: 10.1029/2008JD011438. |
[48] | Mallakpour I, Villarini G. The changing nature of flooding across the central United States[J]. Nature Climate Change, 2015, 5(3): 250-254. |
[49] | Lang M, Ouarda T B M J, Bobée B. Towards operational guidelines for over-threshold modeling[J]. Journal of Hydrology, 1999, 255(3-4): 103-117. |
[50] | He G C, Chen Y N, Li Z, et al. Exploring denoising diffusion probabilistic model for daily streamflow gap filling in Central Asia typical watersheds[J]. Journal of Hydrology: Regional Studies, 2024, 52: 101701, doi: 10.1016/j.ejrh.2024.101701. |
[51] | Liang W T, Chen Y N, Fang G H, et al. Machine learning method is an alternative for the hydrological model in an alpine catchment in the Tianshan region, Central Asia[J]. Journal of Hydrology: Regional Studies, 2023, 49: 101492, doi: 10.1016/j.ejrh.2023.101492. |
[52] | 毛炜峄, 玉素甫·阿布都拉, 程鹏, 等. 1999年夏季中昆仑山北坡诸河冰雪大洪水及其成因分析[J]. 冰川冻土, 2007, 29(4): 553-558. |
[Mao Weiyi, Abudula Yusup, Cheng Peng, et al. Extreme flood events in 1999 and their formation conditions in northern slopes of the middle Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 553-558.] | |
[53] | Su F G, Pritchard H D, Yao T D, et al. Contrasting fate of western Third Pole’s water resources under 21st century climate change[J]. Earths Future, 2022, 10(9): e2022EF002776, doi: 10.1029/2022EF002776. |
[54] | IPCC. AR6 synthesis report: Climate change 2023[R]. Geneva: IPCC, 2023. |
[55] | 刘俊国, 陈鹤, 田展. IPCC AR6报告解读: 气候变化与水安全[J]. 气候变化研究进展, 2022, 18(4): 405-413. |
[Liu Junguo, Chen He, Tian Zhan. Interpretation of IPCC AR6: Climate change and water security[J]. Climate Change Research, 2022, 18(4): 405-413.] | |
[56] | Hock R, Rasul G, Adler C, et al. IPCC special report on the ocean and cryosphere in a changing climate[R]. Cambridge: IPCC, 2019. |
[57] | Fowler H J, Lenderink G, Prein A F, et al. Anthropogenic intensification of short-duration rainfall extremes[J]. Nature Reviews Earth & Environment, 2021, 2(2): 107-122. |
[58] | Tradowsky J S, Philip S Y, Kreienkamp F, et al. Attribution of the heavy rainfall events leading to severe flooding in western Europe during July 2021[J]. Climatic Change, 2023, 176(7): 90, doi: 10.1007/s10584-023-03502-7. |
[59] | Bazai N A, Cui P, Carling P A, et al. Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram[J]. Earth-Science Reviews, 2021, 212: 103432, doi: 10.1016/j.earscirev.2020.103432. |
[60] | Zheng G X, Allen S K, Bao A, et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation[J]. Nature Climate Change, 2021, 11(5): 411-417. |
[61] | Liu Y, Yao Y Z, Wang N, et al. Mapping the risk zoning of storm flood disaster based on heterogeneous data and a machine learning algorithm in Xinjiang, China[J]. Journal of Flood Risk Management, 2021, 14(1): e12671, doi: 10.1111/jfr3.12671. |
[62] | Fang G H, Yang J, Chen Y N, et al. How hydrologic processes differ spatially in a large basin: Multisite and multiobjective modeling in the Tarim River Basin[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(14): 7098-7113. |
[63] | 周聿超. 新疆河流水文水资源[M]. 乌鲁木齐: 新疆科技卫生出版社, 1999: 40-59. |
[Zhou Yuchao. Hydrology and water resources of Xinjiang river[M]. Urumqi: Xinjiang Science and Technology Health Press, 1999: 40-59.] | |
[64] | Guan J Y, Yao J Q, Li M Y, et al. Historical changes and projected trends of extreme climate events in Xinjiang, China[J]. Climate Dynamics, 2022, 59(5): 1753-1774. |
[65] | Wei W, Zou S, Duan W L, et al. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019[J]. Journal of Hydrology, 2023, 620: 129417, doi: 10.1016/j.jhydrol.2023.129417. |
[66] | Wang Q, Zhai P M, Qin D H. New perspectives on ‘warming-wetting’ trend in Xinjiang, China[J]. Advances in Climate Change Research, 2020, 11(3): 252-260. |
[67] | Feng F, Xu S G, Liu J W, et al. Comprehensive benefit of flood resources utilization through dynamic successive fuzzy evaluation model: A case study[J]. Science China Technological Sciences, 2010, 53(2): 529-538. |
[68] | Berghuijs W R, Woods R A, Hutton C J, et al. Dominant flood generating mechanisms across the United States[J]. Geophysical Research Letters, 2016, 43(9): 4382-4390. |
[69] | Shuster W D, Zhang Y, Roy A H, et al. Characterizing storm hydrograph rise and fall dynamics with stream stage data[J]. Journal of the American Water Resources Association, 2008, 44(6): 1431-1440. |
[70] | Karlsen R H, Bishop K, Grabs T, et al. The role of landscape properties, storage and evapotranspiration on variability in streamflow recessions in a boreal catchment[J]. Journal of Hydrology, 2019, 570: 315-328. |
[71] | Cheng Y S, Sang Y F, Wang Z G, et al. Effects of rainfall and underlying surface on flood recession: The upper Huaihe River Basin case[J]. International Journal of Disaster Risk Science, 2021, 12: 111-120. |
[72] | 张俊兰, 罗继, 王荣梅. 近20 a新疆升温融雪(冰)型洪水频次时空变化及大气环流型分析[J]. 干旱区研究, 2021, 38(2): 339-350. |
[Zhang Junlan, Luo Ji, Wang Rongmei. Combined analysis of the spatiotemporal variations in snowmelt (ice) flood frequency in Xinjiang over 20 years and atmospheric circulation patterns[J]. Arid Zone Research, 2021, 38(2): 339-350.] | |
[73] | 胡可可, 何建村, 赵健, 等. 气候变化背景下尼雅河流域生态基流研究[J]. 干旱区地理, 2022, 45(5): 1472-1480. |
[Hu Keke, He Jiancun, Zhao Jian, et al. Ecological base flow in Niya River Basin under climate change[J]. Arid Land Geography, 2022, 45(5): 1472-1480.] | |
[74] | 刘宇, 管子隆, 田济扬, 等. 近70 a泾河流域径流变化及其驱动因素研究[J]. 干旱区地理, 2022, 45(1): 17-26. |
[Liu Yu, Guan Zilong, Tian Jiyang, et al. Runoff change and its driving factors in Jinghe River Basin in recent 70 years[J]. Arid Land Geography, 2022, 45(1): 17-26.] |
/
〈 |
|
〉 |