收稿日期: 2024-02-25
修回日期: 2024-04-02
网络出版日期: 2024-09-24
基金资助
第三次新疆综合科学考察项目(2021xjkk0100);山东省优秀青年科学基金(ZR2023YQ035);国家自然科学基金(42171121)
Spatiotemporal variations of snow cover on the northern slope of Kunlun Mountains
Received date: 2024-02-25
Revised date: 2024-04-02
Online published: 2024-09-24
积雪是水循环的重要组成部分,积雪的积累消融对下游社会经济发展具有重要影响。采用趋势分析、相关性分析等方法分析2000—2020年昆仑山北坡积雪面积、积雪日数(SCD)在空间和时间上的分布特征和变化趋势,并分析积雪的海拔效应及气候对积雪的影响。结果表明:(1) 2000—2020年昆仑山北坡积雪面积呈减少趋势(-152.4 km2·a-1),2010年以前积雪面积距平偏正,2010年后偏负。(2) 月尺度上,积雪覆盖率(SCF)从8月到翌年7月呈先增后减的趋势,冬、春季高于夏、秋季。(3) SCD分布具有明显的空间异质性,中部地区SCD的变化影响该地的年总SCD。(4) 2000—2020年的年均SCD随海拔升高而增加,海拔>6.0 km为331.6 d,说明高海拔地区存在常年性积雪。(5) 气温与积雪面积呈显著负相关(相关系数为-0.68,P<0.01),降水与积雪面积呈不显著正相关(相关系数为0.14,P>0.05),气温对积雪的影响高于降水。
康立民 , 滕心如 , 车佳航 , 怀保娟 . 昆仑山北坡区域积雪时空变化特征[J]. 干旱区地理, 2024 , 47(9) : 1462 -1471 . DOI: 10.12118/j.issn.1000-6060.2024.115
Snow cover is an essential component of the water cycle, and the accumulation and melting of snow have significant impacts on socio-economic development downstream. This study employs trend analysis, correlation analysis, and other methods to analyze the spatiotemporal distribution characteristics and trends of snow cover area and snow cover days (SCD) on the northern slope of Kunlun Mountain of Xinjiang, China from 2000 to 2020. It also examines the elevation effect and the impact of climate on snow cover. The results indicate: (1) From 2000 to 2020, the snow cover area showed a decreasing trend (-152.4 km2·a-1), with a positive anomaly before 2010 and a negative one after. (2) On a monthly scale, the snow cover percentage (SCF) showed a trend of initially increasing and then decreasing from August to the following July, being higher in winter and spring than in summer and autumn. (3) The distribution of SCD exhibits obvious spatial heterogeneity, with changes in the middle region affecting the annual total number of SCD in the area. (4) The average number of SCD per year from 2000 to 2020 increased with elevation, reaching 331.6 d at elevations above 6.0 km, suggesting perennial snow at high altitudes. (5) Temperatures are significantly negatively correlated with the snow cover area (correlation coefficient -0.68, P<0.01), while precipitation is not significantly positively correlated with the snow cover area (correlation coefficient 0.14, P>0.05), and temperature has a stronger impact on snow cover than precipitation.
| [1] | 杨兴国, 秦大河, 秦翔. 冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, 34(2): 392-402. |
| [Yang Xingguo, Qin Dahe, Qin Xiang, et al. Progress in the study of interaction between ice/snow and atmosphere[J]. Journal of Glaciology and Cryopedology, 2012, 34(2): 392-402.] | |
| [2] | Zhang T J. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4): 2004RG000157, doi: 10.1029/2004RG000157. |
| [3] | Henderson G R, Leathers D J, Hanson B. Circulation response to Eurasian versus North American anomalous snow scenarios in the northern Hemisphere with an AGCM coupled to a slab ocean model[J]. Journal of Climate, 2013, 26(5): 1502-1515. |
| [4] | 娄梦筠, 刘志红, 娄少明, 等. 2002—2011年新疆积雪时空分布特征研究[J]. 冰川冻土, 2013, 35(5): 1095-1102. |
| [Lou Mengyun, Liu Zhihong, Lou Shaoming, et al. Temporal and spatial distribution of snow cover in Xinjiang from 2002 to 2011[J]. Journal of Glaciology and Cryopedology, 2013, 35(5): 1095-1102.] | |
| [5] | Wu G X, He B, Duan A M, et al. Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects[J]. Advances in Atmospheric Sciences, 2017, 34(10): 1169-1184. |
| [6] | 阿力木·喀迪阿依, 如素力·玉素甫江, 艾克木·肉克亚木, 等. 2001—2017年艾比湖流域积雪时空变化及其驱动因子分析[J]. 生态科学, 2023, 42(3): 127-135. |
| [Kadiayi Alimu, Yusufujiang Rusuli, Roukeyamu Aikemu, et al. Temporal and spatial changes of snow cover in the Ebinur Lake Basin from 2001 to 2017 and analysis of its driving factors[J]. Ecological Science, 2023, 42(3): 127-135.] | |
| [7] | 易颖, 刘时银, 朱钰, 等. 2002—2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1): 15-26. |
| [Yi Ying, Liu Shiyin, Zhu Yu, et al. Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002—2018[J]. Arid Land Geography, 2021, 44(1): 15-26.] | |
| [8] | 颜伟, 刘景时, 罗光明, 等. 基于MODIS数据的2000—2013年西昆仑山玉龙喀什河流域积雪面积变化[J]. 地理科学进展, 2014, 33(3): 315-325. |
| [Yan Wei, Liu Jingshi, Luo Guangming, et al. Snow cover area changes in the Yurungkax River Basin of west Kunlun Mountains during 2000—2013 using MODIS data[J]. Progress in Geography, 2014, 33(3): 315-325.] | |
| [9] | Duo C, Xie H J, Wang P X, et al. Snow cover variation over the Tibetan Plateau from MODIS and comparison with ground observations[J]. Journal of Applied Remote Sensing, 2014, 8(1): 084690, doi: 10.1117/1.JRS.8.084690. |
| [10] | Huang X D, Deng J, Wang W, et al. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau[J]. Remote Sensing of Environment, 2017, 190: 274-288. |
| [11] | 张永宏, 宋凯达, 王剑庚, 等. 2000—2020年北疆地区积雪时空变化趋势及影响要素[J]. 科技导报, 2023, 41(3): 72-80. |
| [Zhang Yonghong, Song Kaida, Wang Jiangeng, et al. The temporal and spatial variation trends and influencing factors of snow cover in northern Xinjiang from 2000 to 2020[J]. Science & Technology Review, 2023, 41(3): 72-80.] | |
| [12] | 刘俊峰, 陈仁升. 基于MODIS双卫星积雪遥感数据的积雪日数空间分布研究[J]. 冰川冻土, 2011, 33(3): 504-511. |
| [Liu Junfeng, Chen Rensheng, et al. Validation of MODIS snow covered days by the combined using of MODIS aqua and terra snow cover products and in-situ observations all over China[J]. Journal of Glaciology and Cryopedology, 2011, 33(3): 504-511.] | |
| [13] | 吕志邦, 王玮, 冯琦胜, 等. 基于MODIS与AMSR-E数据的雪被产品合成及精度评价[J]. 草业科学, 2011, 28(6): 931-938. |
| [Lü Zhibang, Wang Wei, Feng Qisheng, et al. Composition and accuracy assessment of snow cover product based on MODIS and AMSR-Edata[J]. Pratacultural Science, 2011, 28(6): 931-938.] | |
| [14] | Wulder M A, Loveland T R, Roy D P, et al. Current status of Landsat program, science, and applications[J]. Remote Sensing of Environment, 2019, 225: 127-147. |
| [15] | 孙燕华, 黄晓东, 王玮, 等. 2003—2010年青藏高原积雪及雪水当量的时空变化[J]. 冰川冻土, 2014, 36(6): 1337-1344. |
| [Sun Yanhua, Huang Xiaodong, Wang Wei, et al. Spatio-temporal changes of snow cover and snow water equivalent in the Tibetan Plateau during 2003—2010[J]. Journal of Glaciology and Cryopedology, 2014, 36(6): 1337-1344.] | |
| [16] | Yi Y, Liu S Y, Zhu Y, et al. Spatiotemporal heterogeneity of snow cover in the central and western Karakoram Mountains based on a refined MODIS product during 2002—2018[J]. Atmospheric Research, 2021, 250: 105402, doi: 10.1016/j.atmosres.2020.105402. |
| [17] | She J F, Zhang Y F, Li X G, et al. Changes in snow and glacier cover in an arid watershed of the western Kunlun Mountains using multisource remote-sensing data[J]. International Journal of Remote Sensing, 2014, 35(1): 234-252. |
| [18] | Ma X F, Yan W, Zhao C Y, et al. Snow-cover area and runoff variation under climate change in the west Kunlun Mountains[J]. Water, 2019, 11(11): 2246, doi: 10.3390/w11112246. |
| [19] | 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002(1): 1-8. |
| [Zhang Yili, Li Bingyuan, Zheng Du, et al. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002(1): 1-8.] | |
| [20] | Hao X H, Huang G H, Zheng Z J, et al. Development and validation of a new MODIS snow-cover-extent product over China[J]. Hydrology and Earth System Sciences, 2022, 26(8): 1937-1952. |
| [21] | Munoz-sabater J, Dutra E, Agusti-panareda A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science Data, 2021, 13(9): 4349-4383. |
| [22] | 邹逸凡, 孙鹏, 张强, 等. 2001—2019年横断山区积雪时空变化及其影响因素分析[J]. 冰川冻土, 2021, 43(6): 1641-1658. |
| [Zou Yifan, Sun Peng, Zhang Qiang, et al. Analysis on spatial-temporal variation of snow cover and its influencing factors in the Hengduan Mountains from 2001 to 2019[J]. Journal of Glaciology and Cryopedology, 2021, 43(6): 1641-1658.] | |
| [23] | 李虹, 李忠勤, 陈普晨, 等. 近20 a新疆阿尔泰山积雪时空变化及其影响因素[J]. 干旱区研究, 2023, 40(7): 1040-1051. |
| [Li Hong, Li Zhongqin, Chen Puchen, et al. Spatio-temporal variation of snow cover in Altai Mountains of Xinjiang in recent 20 years and its influencing factors[J]. Arid Zone Research, 2023, 40(7): 1040-1051.] | |
| [24] | 刘一静, 孙燕华, 钟歆玥, 等. 从第三极到北极: 积雪变化研究进展[J]. 冰川冻土, 2020, 42(1): 140-156. |
| [Liu Yijing, Sun Yanhua, Zhong Xinyue, et al. Changes of snow cover in the Third Pole and the Arctic[J]. Journal of Glaciology and Cryopedology, 2020, 42(1): 140-156.] | |
| [25] | 唐志光, 王建, 王欣, 等. 基于MODIS数据的青藏高原积雪日数提取与时空变化分析[J]. 山地学报, 2017, 35(3): 412-419. |
| [Tang Zhiguang, Wang Jian, Wang Xin, et al. Extraction and spatiotemporal analysis of snow covered days over Tibetan Plateau based on MODIS data[J]. Moutain Research, 2017, 35(3): 412-419.] | |
| [26] | 王芝兰, 张飞民, 王澄海, 等. 1980—2019年青藏高原积雪深度时空差异性分析[J]. 冰川冻土, 2022, 44(3): 810-821. |
| [Wang Zhilan, Zhang Feimin, Wang Chenghai, et al. Analysis on spatial and temporal difference of snow depth over the Tibetan Plateau from 1980 to 2019[J]. Journal of Glaciology and Cryopedology, 2022, 44(3): 810-821. | |
| [27] | Xu W F, Ma L J, Ma M N, et al. Spatial-temporal variability of snow cover and depth in the Qinghai-Tibetan Plateau[J]. Journal of Climate, 2017, 30(4): 1521-1533. |
| [28] | Chen X, An S, Inouye D W, et al. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof[J]. Global Change Biology, 2015, 21(10): 3635-3646. |
| [29] | 黄晓东, 马英, 李雨馨, 等. 1980—2020年青藏高原积雪时空变化特征[J]. 冰川冻土, 2023, 45(2): 423-434. |
| [Huang Xiaodong, Ma Ying, Li Yuxin, et al. Spatiotemporal variation characteristics of snow cover over the Tibetan Plateau from 1980 to 2020[J]. Journal of Glaciology and Cryopedology, 2023, 45(2): 423-434.] | |
| [30] | Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91. |
| [31] | Chen S B, Liu Y F, Thomas A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961—2000[J]. Climatic Change, 2006, 76(3-4): 291-319. |
| [32] | 周敏强, 王云龙, 梁慧, 等. 青藏高原Soumi-NPP和MODIS积雪范围产品的对比分析[J]. 冰川冻土, 2019, 41(1): 36-44. |
| [Zhou Minqiang, Wang Yunlong, Liang Hui, et al. Comparative analysis of the snow coverage products of Soumi-NPP and MODIS in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Cryopedology, 2019, 41(1): 36-44. | |
| [33] | 赵琴, 郝晓华, 和栋材, 等. 1980—2019年北疆积雪时空变化与气候和植被的关系[J]. 遥感技术与应用, 2021, 36(6): 1247-1258. |
| [Zhao Qin, Hao Xiaohua, He Dongcai, et al. The relationship between the temporal and spatial changes of snow cover and climate and vegetation in northern Xinjiang from 1980 to 2019[J]. Remote Sensing Technology and Application, 2021, 36(6): 1247-1258.] | |
| [34] | 王国亚, 毛炜峄, 贺斌, 等. 新疆阿勒泰地区积雪变化特征及其对冻土的影响[J]. 冰川冻土, 2012, 34(6): 1293-1300. |
| [Wang Guoya, Mao Weiyi, He Bin, et al. Changes in snow covers during 1961—2011 and its effects on frozen ground in Altay Region, Xinjiang[J]. Journal of Glaciology and Cryopedology, 2012, 34(6): 1293-1300.] | |
| [35] | 张博, 李雪梅, 秦启勇, 等. 中国天山积雪垂直分布异质性研究[J]. 干旱区地理, 2022, 45(3): 754-762. |
| [Zhang Bo, Li Xuemei, Qin Qiyong, et al. Heterogeneity of the vertical distribution of snow cover in Chinese Tianshan Mountains[J]. Arid Land Geography, 2022, 45(3): 754-762.] | |
| [36] | 除多, 洛桑曲珍, 林志强, 等. 近30年青藏高原雪深时空变化特征分析[J]. 气象, 2018, 44(2): 233-243. |
| [Chu Duo, Luosang Quzhen, Lin Zhiqiang, et al. Spatio-temporal variation of snow depth on Tibetan Plateau over the last 30 years[J]. Meteorological Monthly, 2018, 44(2): 233-243.] | |
| [37] | Tan X J, Wu Z N, Mu X M, et al. Spatiotemporal changes in snow cover over China during 1960—2013[J]. Atmospheric Research, 2019, 218: 183-194. |
/
| 〈 |
|
〉 |