收稿日期: 2023-10-11
修回日期: 2024-01-27
网络出版日期: 2024-07-30
基金资助
湖南省自然科学基金项目(2023JJ30237);国家自然科学基金项目(42171137);湖南省教育厅科学研究项目(21C0346)
Research review of mass changes for lake-terminating glaciers in the Himalayas
Received date: 2023-10-11
Revised date: 2024-01-27
Online published: 2024-07-30
入湖冰川在喜马拉雅山地区广泛分布,其快速消融和末端崩解,是该地区冰湖溃决洪水最重要的触发因子和影响因素。近年来入湖冰川整体处于物质持续且加速亏损状态,1975—2000年入湖冰川物质平衡为-0.33±0.07 m w.e.·a-1,近10 a达到-0.56±0.08 m w.e.·a-1,其平均物质损失速率-0.45±0.08 m w.e.·a-1。入湖冰川物质损失速率明显高于其他类型冰川,末端消融及崩解是其主要原因。当前冰川末端水下物质损失仍无法准确估算,广泛应用于入海冰川末端消融模拟的羽流模型,为估算入湖冰川末端湖-冰物/热交换过程研究提供了可行方法,其中冰下融水径流量、冰川末端切面形态、湖水温度和密度是影响羽流模型估算结果的重要参数。基于羽流模型评估冰川末端水下消融特征,为准确评估未来情境下冰川物质变化奠定基础。
贾尚坤 , 魏俊锋 , 张法刚 , 王欣 . 喜马拉雅山入湖冰川物质变化研究综述[J]. 干旱区地理, 2024 , 47(7) : 1156 -1164 . DOI: 10.12118/j.issn.1000-6060.2023.566
Lake-terminating glaciers are widely distributed in the Himalayas, and their rapid melting and terminal calving are the most significant triggering and influencing factors of glacial lake outburst floods in the region. In recent years, the lake-terminating glaciers have experienced continuous and accelerating mass loss. From 1975 to 2000, the mass loss of lake-terminating glaciers was −0.33±0.07 m w.e.·a−1. In the past 10 years, it has reached −0.56±0.08 m w.e.·a−1, and its average mass loss rate was −0.45±0.08 m w.e.·a−1. The mass loss rate of lake-terminating glaciers is significantly higher than that of others, and terminal melting and calving are the primary reasons. The subaqueous mass loss of lake-terminating glaciers terminus cannot be accurately estimated. The plume model is widely used to simulate the melting of tidewater glaciers, providing a feasible method for determining the lake-ice mass/heat exchange process at the lake-terminating glaciers terminus. The amount of subglacial meltwater runoff, the cross-section shape of the glacier terminal, and the temperature and density of lake water significantly affect the estimation results of the plume model. Evaluating the underwater melting characteristics of glacier terminals based on the plume model will lay the foundation for accurately estimating future glacier mass changes.
[1] | 杨雪雯, 王宁练, 梁倩, 等. 近60 a天山北坡冰川变化研究[J]. 干旱区地理, 2023, 46(7): 1073-1083. |
[Yang Xuewen, Wang Ninglian, Liang Qian, et al. Glacier changes on the north slope of Tianshan Mountains in recent 60 years[J]. Arid Land Geography, 2023, 46(7): 1073-1083.] | |
[2] | 刘玉婷, 刘景时, 古丽格纳·哈力木拉提, 等. 喜马拉雅山北坡典型冰川流域水文过程比较研究[J]. 冰川冻土, 2022, 44(3): 1063-1069. |
[Liu Yuting, Liu Jingshi, Halimulati Guligena, et al. Comparison of hydrological regime between two glacier-fed watersheds in the north Himalayas[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 1063-1069.] | |
[3] | Kulkarni A V, Karyakarte Y. Observed changes in Himalayan glaciers[J]. Current Science, 2014, 106(2): 237-244. |
[4] | Pandey P, Ali S N, Champati Ray P K. Glacier-glacial lake interactions and glacial lake development in the central Himalaya, India (1994—2017)[J]. Journal of Earth Science, 2021, 32: 1563-1574. |
[5] | Tweed F S, Carrivick J L. Deglaciation and proglacial lakes[J]. Geology Today, 2015, 31(3): 96-102. |
[6] | Truffer M, Motyka R J. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings[J]. Reviews of Geophysics, 2016, 54(1): 220-239. |
[7] | Pronk J B, Bolch T, King O, et al. Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region[J]. The Cryosphere, 2021, 15(12): 5577-5599. |
[8] | Nick F M, Vieli A, Howat I M, et al. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus[J]. Nature Geoscience, 2009, 2: 110-114. |
[9] | Benn D I, ?str?m J A. Calving glaciers and ice shelves[J]. Advances in Physics: X, 2018, 3(1): 1513819, doi: 10.1080/23746149.2018.1513819. |
[10] | Shugar D H, Burr A, Haritashya U K, et al. Rapid worldwide growth of glacial lakes since 1990[J]. Nature Climate Change, 2020, 10: 939-945. |
[11] | Zhang G Q, Chen W F, Li G, et al. Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle[J]. Remote Sensing of Environment, 2020, 237: 111554, doi: 10.1016/j.rse.2019.111554. |
[12] | Wei J F, Liu S Y, Wang X, et al. Longbasaba glacier recession and contribution to its proglacial lake volume between 1988 and 2018[J]. Journal of Glaciology, 2021, 67(263): 473-484. |
[13] | Song C Q, Sheng Y W, Wang J D, et al. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas[J]. Geomorphology, 2017, 280: 30-38. |
[14] | Wang X, Guo X Y, Yang C D, et al. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images[J]. Earth System Science Data, 2020, 12(3): 2169-2182. |
[15] | Taylor C, Robinson T R, Dunning S, et al. Glacial lake outburst floods threaten millions globally[J]. Nature Communications, 2023, 14: 487, doi: 10.1038/s41467-023-36033-x. |
[16] | Nie Y, Liu Q, Wang J D, et al. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis[J]. Geomorphology, 2018, 308: 91-106. |
[17] | Consortium R. Randolph glacier inventory: A dataset of global glacier outlines: Version 6.0[R]. Colorado: National Snow and Ice Data Center, USA, 2017. |
[18] | King O, Bhattacharya A, Bhambri R, et al. Glacial lakes exacerbate Himalayan glacier mass loss[J]. Scientific Reports, 2019, 9: 18145, doi: 10.1038/s41598-019-53733-x. |
[19] | 张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土, 2021, 43(6): 1673-1692. |
[Zhang Taigang, Wang Weicai, Gao Tanguang, et al. Glacial lake outburst floods on the High Mountain Asia: A review[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1673-1692.] | |
[20] | Zhang G Q, Bolch T, Yao T D, et al. Underestimated mass loss from lake-terminating glaciers in the greater Himalaya[J]. Nature Geoscience, 2023, 16: 333-338. |
[21] | Consortium R. Randolph glacier inventory: A dataset of global glacier outlines: Version 7.0[R]. Colorado: National Snow and Ice Data Center, USA, 2023. |
[22] | Bolch T, Kulkarni A, K??b A, et al. The state and fate of Himalayan glaciers[J]. Science, 2012, 336(6079): 310-314. |
[23] | Thakuri S, Salerno F, Smiraglia C, et al. Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central southern Himalaya) using optical satellite imagery[J]. The Cryosphere, 2014, 8(4): 1297-1315. |
[24] | Fan Y B, Ke C Q, Zhou X B, et al. Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM[J]. Journal of Glaciology, 2023, 69(275): 500-512. |
[25] | Maurer J M, Schaefer J M, Rupper S, et al. Acceleration of ice loss across the Himalayas over the past 40 years[J]. Science Advances, 2019, 5(6): eaav7266, doi: 10.1126/sciadv.aav7266. |
[26] | Azam M F, Wagnon P, Ramanathan A, et al. From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India[J]. Journal of Glaciology, 2012, 58(208): 315-324. |
[27] | Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J]. Nature Geoscience, 2019, 12: 22-27. |
[28] | 魏俊锋, 张特, 张勇, 等. 入湖冰川物质平衡序列重建与分析——以喜马拉雅山北坡龙巴萨巴冰川为例[J]. 冰川冻土, 2022, 44(3): 914-929. |
[Wei Junfeng, Zhang Te, Zhang Yong, et al. Reconstruction and analysis of mass balance for lake-terminating glaciers: A case study of Longbasaba glacier, north Himalaya[J]. Journal of Glaciology and Geocryology, 2022, 44(3): 914-929.] | |
[29] | Zhang G Q, Bolch T, Allen S, et al. Glacial lake evolution and glacier-lake interactions in the Poiqu River Basin, central Himalaya, 1964—2017[J]. Journal of Glaciology, 2019, 65(251): 347-365. |
[30] | Agarwal V, de Vries M V W, Haritashya U K, et al. Long-term analysis of glaciers and glacier lakes in the central and eastern Himalaya[J]. Science of the Total Environment, 2023, 898: 165598, doi: 10.1016/j.scitotenv.2023.165598. |
[31] | King O, Dehecq A, Quincey D, et al. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya[J]. Global and Planetary Change, 2018, 167: 46-60. |
[32] | Jiang S, Nie Y, Liu Q, et al. Glacier change, supraglacial debris expansion and glacial lake evolution in the Gyirong River Basin, central Himalayas, between 1988 and 2015[J]. Remote Sensing, 2018, 10(7): 986, doi: 10.3390/rs10070986. |
[33] | 徐道明, 冯清华. 西藏喜马拉雅山区危险冰湖及其溃决特征[J]. 地理学报, 1989, 44(3): 343-352. |
[Xu Daoming, Feng Qinghua. Dangerous glacial lake and outburst features in Xizang Himalayas[J]. Acta Geographica Sinica, 1989, 44(3): 343-352.] | |
[34] | 汤明高, 陈浩文, 赵欢乐, 等. 青藏高原冰湖溃决灾害隐患识别、发育规律及危险性评价[J]. 地质通报, 2023, 42(5): 730-742. |
[Tang Minggao, Chen Haowen, Zhao Huanle, et al. Identification, development law and risk assessment of the hidden dangers of glacial lake outburst disasters on the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2023, 42(5): 730-742.] | |
[35] | Cook K L, Andermann C, Gimbert F, et al. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya[J]. Science, 2018, 362(6410): 53-57. |
[36] | Zhang G Q, Yao T D, Xie H J, et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change, 2015, 131: 148-157. |
[37] | Pelto B M, Maussion F, Menounos B, et al. Bias-corrected estimates of glacier thickness in the Columbia River Basin, Canada[J]. Journal of Glaciology, 2020, 66(260): 1051-1063. |
[38] | Welty E, Zemp M, Navarro F, et al. Worldwide version-controlled database of glacier thickness observations[J]. Earth System Science Data, 2020, 12(4): 3039-3055. |
[39] | Li C, Jiang L M, Liu L, et al. Regional and altitude-dependent estimate of the SRTM C/X-band radar penetration difference on High Mountain Asia glaciers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4244-4253. |
[40] | Zhao F Y, Long D, Li X D, et al. Rapid glacier mass loss in the southeastern Tibetan Plateau since the year 2000 from satellite observations[J]. Remote Sensing of Environment, 2022, 270: 112853, doi: 10.1016/j.rse.2021.112853. |
[41] | Zhou Y S, Li X, Zheng D H, et al. Evolution of geodetic mass balance over the largest lake-terminating glacier in the Tibetan Plateau with a revised radar penetration depth based on multi-source high-resolution satellite data[J]. Remote Sensing of Environment, 2022, 275: 113029, doi: 10.1016/j.rse.2022.113029. |
[42] | Werder M A, Huss M, Paul F, et al. A Bayesian ice thickness estimation model for large-scale applications[J]. Journal of Glaciology, 2020, 66(255): 137-152. |
[43] | Millan R, Mouginot J, Rabatel A, et al. Ice velocity and thickness of the world’s glaciers[J]. Nature Geoscience, 2022, 15: 124-129. |
[44] | Moholdt G, Nuth C, Hagen J O, et al. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry[J]. Remote Sensing of Environment, 2010, 114(11): 2756-2767. |
[45] | Zhao C X, Yang W, Miles E, et al. Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau[J]. The Cryosphere, 2023, 17(9): 3895-3913. |
[46] | Denzinger F, Machguth H, Barandun M, et al. Geodetic mass balance of Abramov glacier from 1975 to 2015[J]. Journal of Glaciology, 2021, 67(262): 331-342. |
[47] | Baurley N R, Robson B A, Hart J K. Long-term impact of the proglacial lake J?kulsárlón on the flow velocity and stability of Breieamerkurj?kull glacier, Iceland[J]. Earth Surface Processes and Landforms, 2020, 45(11): 2647-2663. |
[48] | Main B, Copland L, Smeda B, et al. Terminus change of Kaskawulsh glacier, Yukon, under a warming climate: Retreat, thinning, slowdown and modified proglacial lake geometry[J]. Journal of Glaciology, 2023, 69(276): 936-952. |
[49] | Lee E, Carrivick J L, Quincey D J, et al. Accelerated mass loss of Himalayan glaciers since the Little Ice Age[J]. Scientific Reports, 2021, 11: 24284, doi: 10.1038/s41598-021-03805-8. |
[50] | Tsutaki S, Fujita K, Nuimura T, et al. Contrasting thinning patterns between lake- and land-terminating glaciers in the Bhutanese Himalaya[J]. The Cryosphere, 2019, 13(10): 2733-2750. |
[51] | Carrivick J L, Tweed F S. A global assessment of the societal impacts of glacier outburst floods[J]. Global and Planetary Change, 2016, 144: 1-16. |
[52] | Stubblefield A G, Creyts T T, Kingslake J, et al. Modeling oscillations in connected glacial lakes[J]. Journal of Glaciology, 2019, 65(253): 745-758. |
[53] | Bolch T, Peters J, Yegorov A, et al. Identification of potentially dangerous glacial lakes in the northern Tien Shan[J]. Natural Hazards, 2011, 59: 1691-1714. |
[54] | Boyce E S, Motyka R J, Truffer M. Flotation and retreat of a lake-calving terminus, Mendenhall glacier, southeast Alaska, USA[J]. Journal of Glaciology, 2007, 53(181): 211-224. |
[55] | Todd J, Christoffersen P, Zwinger T, et al. A full-Stokes 3-D calving model applied to a large Greenlandic glacier[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(3): 410-432. |
[56] | Cook S J, Christoffersen P, Todd J, et al. Coupled modelling of subglacial hydrology and calving-front melting at Store glacier, west Greenland[J]. The Cryosphere, 2020, 14(3): 905-924. |
[57] | Kneib M, Miles E S, Buri P, et al. Sub-seasonal variability of supraglacial ice cliff melt rates and associated processes from time-lapse photogrammetry[J]. The Cryosphere, 2022, 16(11): 4701-4725. |
[58] | Buri P, Miles E S, Steiner J F, et al. A physically based 3-D model of ice cliff evolution over debris-covered glaciers[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(12): 2471-2493. |
[59] | Holland D M, Thomas R H, de Young B, et al. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters[J]. Nature Geoscience, 2008, 1: 659-664. |
[60] | Carroll D, Sutherland D A, Shroyer E L, et al. Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation[J]. Journal of Physical Oceanography, 2015, 45(8): 2169-2185. |
[61] | Burchard H, Bolding K, Jenkins A, et al. The vertical structure and entrainment of subglacial melt water plumes[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(3): e2021MS002925, doi: 10.1029/2021MS002925. |
[62] | Slater D A, Straneo F. Submarine melting of glaciers in Greenland amplified by atmospheric warming[J]. Nature Geoscience, 2022, 15: 794-799. |
[63] | Cook S J, Christoffersen P, Todd J. A fully-coupled 3D model of a large Greenlandic outlet glacier with evolving subglacial hydrology, frontal plume melting and calving[J]. Journal of Glaciology, 2022, 68(269): 486-502. |
[64] | Morton B R, Taylor G I, Turner J S. Turbulent gravitational convection from maintained and instantaneous sources[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1956, 234(1196): 1-23. |
[65] | Holland D M, Jenkins A. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf[J]. Journal of Physical Oceanography, 1999, 29(8): 1787-1800. |
[66] | Jenkins A. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers[J]. Journal of Physical Oceanography, 2011, 41(12): 2279-2294. |
[67] | Jackson R H, Shroyer E L, Nash J D, et al. Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations[J]. Geophysical Research Letters, 2017, 44(13): 6886-6894. |
[68] | Slater D, Nienow P, Sole A, et al. Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling[J]. Journal of Glaciology, 2017, 63(238): 309-323. |
[69] | Kimura S, Holland P R, Jenkins A, et al. The effect of meltwater plumes on the melting of a vertical glacier face[J]. Journal of Physical Oceanography, 2014, 44(12): 3099-3117. |
[70] | Cowton T, Slater D, Sole A, et al. Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes[J]. Journal of Geophysical Research: Oceans, 2015, 120(2): 796-812. |
[71] | Carroll D, Sutherland D A, Hudson B, et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords[J]. Geophysical Research Letters, 2016, 43(18): 9739-9748. |
[72] | Bartholomaus T C, Stearns L A, Sutherland D A, et al. Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in west Greenland[J]. Annals of Glaciology, 2016, 57(73): 25-38. |
[73] | Mankoff K D, Straneo F, Cenedese C, et al. Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord[J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8670-8688. |
[74] | Stevens L A, Straneo F, Das S B, et al. Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations[J]. The Cryosphere, 2016, 10(1): 417-432. |
[75] | Xu Y, Rignot E, Fenty I, et al. Subaqueous melting of Store glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations[J]. Geophysical Research Letters, 2013, 40(17): 4648-4653. |
[76] | Slater D A, Nienow P W, Goldberg D N, et al. A model for tidewater glacier undercutting by submarine melting[J]. Geophysical Research Letters, 2017, 44(5): 2360-2368. |
[77] | van den Broeke M R, Enderlin E M, Howat I M, et al. On the recent contribution of the Greenland ice sheet to sea level change[J]. The Cryosphere, 2016, 10(5): 1933-1946. |
[78] | 晋子振, 秦翔, 赵求东, 等. 祁连山西段老虎沟流域消融季径流变化特征研究[J]. 干旱区地理, 2023, 46(2): 178-190. |
[Jin Zizhen, Qin Xiang, Zhao Qiudong, et al. Characteristics of runoff variation during ablation season in Laohugou Watershed of western Qilian Mountains[J]. Arid Land Geography, 2023, 46(2): 178-190.] | |
[79] | 谢自楚, 刘潮海. 冰川学导论[M]. 上海: 上海科学普及出版社, 2010: 85-158. |
[Xie Zichu, Liu Chaohai. Introduction to glaciation[M]. Shanghai: Shanghai Popular Science Press, 2010: 85-158.] | |
[80] | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667. |
[81] | M?lg T, Maussion F, Scherer D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia[J]. Nature Climate Change, 2014, 4: 68-73. |
[82] | Maussion F, Scherer D, M?lg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia reanalysis[J]. Journal of Climate, 2014, 27(5): 1910-1927. |
[83] | Fugger S, Fyffe C L, Fatichi S, et al. Understanding monsoon controls on the energy and mass balance of glaciers in the central and eastern Himalaya[J]. The Cryosphere, 2022, 16(5): 1631-1652. |
[84] | Bohner J. General climatic controls and topoclimatic variations in central and high Asia[J]. Boreas, 2006, 35(2): 279-295. |
[85] | Bookhagen B, Burbank D W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya[J]. Geophysical Research Letters, 2006, 33(13): L08405, doi: 10.1029/2006GL026037. |
[86] | Worni R, Huggel C, Stoffel M. Glacial lakes in the Indian Himalayas: From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes[J]. Science of the Total Environment, 2013, 468: S71-S84. |
[87] | 张东启, 效存德, 刘伟刚. 喜马拉雅山区1951—2010年气候变化事实分析[J]. 气候变化研究进展, 2012, 8(2): 110-118. |
[Zhang Dongqi, Xiao Cunde, Liu Weigang. Analysis on Himalayan climate change in 1951—2010[J]. Climate Change Research, 2012, 8(2): 110-118.] | |
[88] | Fried M J, Catania G A, Bartholomaus T C, et al. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier[J]. Geophysical Research Letters, 2015, 42(21): 9328-9336. |
[89] | Sutherland J L, Carrivick J L, Gandy N, et al. Proglacial lakes control glacier geometry and behavior during recession[J]. Geophysical Research Letters, 2020, 47(19): e2020GL088865, doi: 10.1029/2020GL088865. |
[90] | Werder M A, Hewitt I J, Schoof C G, et al. Modeling channelized and distributed subglacial drainage in two dimensions[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2140-2158. |
[91] | Sugden D E, Clapperton C M, Knight P G. A j?kulhlaup near S?ndre Str?mfjord, west Greenland, and some effects on the ice-sheet margin[J]. Journal of Glaciology, 1985, 31(109): 366-368. |
[92] | Carrivick J L, Tweed F S, Sutherland J L, et al. Toward numerical modeling of interactions between ice-marginal proglacial lakes and glaciers[J]. Frontiers in Earth Science, 2020, 8: 577068, doi: 10.3389/feart.2020.577068. |
[93] | Mallalieu J, Carrivick J L, Quincey D J, et al. Calving seasonality associated with melt-undercutting and lake ice cover[J]. Geophysical Research Letters, 2020, 47(8): e2019GL086561, doi: 10.1029/2019GL086561. |
[94] | van Wyk de Vries M, Ito E, Shapley M, et al. Physical limnology and sediment dynamics of Lago Argentino: The world’s largest ice-contact lake[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(3): e2022JF006598, doi: 10.1029/2022JF006598. |
[95] | ?strem G. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges[J]. Geografiska Annaler, 1959, 41(4): 228-230. |
[96] | Reznichenko N, Davies T, Shulmeister J, et al. Effects of debris on ice-surface melting rates: An experimental study[J]. Journal of Glaciology, 2010, 56(197): 384-394. |
[97] | Veh G, Korup O, Walz A. Hazard from Himalayan glacier lake outburst floods[J]. Proceedings of the National Academy of Sciences, 2020, 117(2): 907-912. |
/
〈 | 〉 |