气候与水文

基于两种降水数据的苏巴什水库暴雨山洪淹没模拟及致灾临界雨量阈值研究

  • 张连成 ,
  • 司嘉怡 ,
  • 胡列群 ,
  • 王梅霞 ,
  • 张太西
展开
  • 1.新疆维吾尔自治区气候中心,新疆 乌鲁木齐 830002
    2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    3.新疆工程学院,新疆 乌鲁木齐 830023
    4.新疆维吾尔自治区气象服务中心,新疆 乌鲁木齐 830002
    5.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
张连成(1990-),男,硕士研究生,高级工程师,主要从事气象灾害和气候变化研究. E-mail: Liancheng.Zhang@UGent.be
胡列群(1965-),男,大学本科,正研级高工,主要从事气象服务与气候变化研究. E-mail: hlq1965@163.com

收稿日期: 2023-10-11

  修回日期: 2023-12-06

  网络出版日期: 2024-07-30

基金资助

安徽省创新发展专项面上项目(CXM202110);新疆维吾尔自治区自然科学基金项目(2021D01B83);新疆气象科技创新发展基金项目(MS202207)

Simulation of storm flood inundation and critical rainfall threshold for disaster in Subash Reservoir based on two types of precipitation data

  • ZHANG Liancheng ,
  • SI Jiayi ,
  • HU Liequn ,
  • WANG Meixia ,
  • ZHANG Taixi
Expand
  • 1. Xinjiang Uygur Autonomous Region Climate Center, Urumqi 830002, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Xinjiang Institute of Engineering, Urumqi 830023, Xinjiang, China
    4. Xinjiang Meteorological Service Center, Urumqi 830002, Xinjiang, China
    5. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2023-10-11

  Revised date: 2023-12-06

  Online published: 2024-07-30

摘要

以阿克苏地区苏巴什水库为研究对象,采用多源降水融合数据、雨量站数据、数字高程模型(DEM)数据以及土地利用数据等资料,运用FloodArea模型对苏巴什水库典型暴雨山洪淹没过程进行精细化模拟,通过淹没深度和汇水量2个参量,对比分析2种降水数据源模拟效果,在此基础上,构建了降水-淹没深度关系模型,得出冲砂闸底板高程、汛限水位、泄洪闸堰顶高程和坝顶高程对应的致灾临界雨量阈值。结果表明:以多源降水融合数据驱动的FloodArea模型模拟苏巴什水库淹没深度和计算汇水量较雨量站模拟的精度更高,更接近真实值,多源降水融合数据和雨量站降水数据模拟得到的淹没深度误差率分别为8.59%和18.67%。苏巴什水库淹没水位达到冲砂闸底板高程、汛限水位、泄洪闸堰顶高程和坝顶高程对应累积4 h降水量的致灾临界雨量阈值分别为7.1 mm、20.1 mm、32.9 mm和44.7 mm。研究结果可为苏巴什水库暴雨山洪预警提供理论依据,并提升暴雨山洪预警能力。

本文引用格式

张连成 , 司嘉怡 , 胡列群 , 王梅霞 , 张太西 . 基于两种降水数据的苏巴什水库暴雨山洪淹没模拟及致灾临界雨量阈值研究[J]. 干旱区地理, 2024 , 47(7) : 1147 -1155 . DOI: 10.12118/j.issn.1000-6060.2023.565

Abstract

This study focuses on the Subash Reservoir area in the Aksu Prefecture, Xinjiang, China, employing various data sources, including merged precipitation, rainfall station, digital elevation model, and land-use data. Using the FloodArea model, a refined simulation of typical torrential rain-induced flood processes in the Subash Reservoir is conducted. By analyzing the inundation depth and runoff volume, and the simulation results of two precipitation data sources are compared, and a precipitation-inundation depth relationship model is established, determining critical rainfall thresholds corresponding to the sediment-flushing gate bottom elevation, flood limit water level, spillway gate weir top elevation, and dam crest elevation. The results reveal that the FloodArea model driven by multi-source precipitation fusion data has higher accuracy and closer approximation to the actual values for the inundation depth and calculated runoff volume in the Subash Reservoir than the model driven by rain gauge precipitation data. The error simulation rates for inundation depth of the two kind of data are 8.59% and 18.67%, respectively. The cumulative 4-hour precipitation thresholds for reaching inundation levels corresponding to the sediment-flushing gate bottom elevation, flood limit water level, spillway gate weir top elevation, and dam crest elevation of the Subash Reservoir are 7.1 mm, 20.1 mm, 32.9 mm, and 44.7 mm, respectively. The results provide a theoretical reference for torrential rain-induced early flood warning in the Subash Reservoir region to enhance the capability of early flood warning for such scenarios.

参考文献

[1] 张磊, 王文, 文明章, 等. 基于“FloodArea”模型的山洪灾害精细化预警方法研究[J]. 复旦学报 (自然科学版), 2015, 54(3): 282-287.
  [Zhang Lei, Wang Wen, Wen Mingzhang, et al. Research on refined early-waring method of mountain flood disaster based on FloodArea[J]. Journal of Fudan University (Natural Science Edition), 2015, 54(3): 282-287.]
[2] 赵琳娜, 包红军, 田付友, 等. 水文气象研究进展[J]. 气象, 2012, 38(2): 147-154.
  [Zhao Linna, Bao Hongjun, Tian Fuyou, et al. Advances in hydrometeorological research[J]. Meteorological Monthly, 2012, 38(2): 147-154.]
[3] 叶勇, 王振宇, 范波序. 浙江省小流域山洪灾害临界雨量确定方法分析[J]. 水文, 2008, 28(1): 56-58.
  [Ye Yong, Wang Zhenyu, Fan Boxu. An analysis method for ascertain critical rainfall of mountain flood disaster of small watershed in Zhejiang Province[J]. Journal of China Pydrology, 2008, 28(1): 56-58.]
[4] 李兰, 周月华, 叶丽梅, 等. 基于GIS淹没模型的流域暴雨洪涝风险区划方法[J]. 气象, 2013, 39(1): 112-117.
  [Li Lan, Zhou Yuehua, Ye Limei, et al. Basin rainstorm flood risk regionalization method based on GIS rainstorm flood inundation model[J]. Meteorological Monthly, 2013, 39(1): 112-117.]
[5] 叶金印, 李致家, 常露. 基于动态临界雨量的山洪预警方法研究与应用[J]. 气象, 2014, 40(1): 101-107.
  [Ye Jinyin, Li Zhijia, Chang Lu. Research and application of flash flood early warning method based on dynamic critical precipitation[J]. Meteorological Monthly, 2014, 40(1): 101-107.]
[6] 谢五三, 田红, 卢燕宇. 基于FloodArea模型的大通河流域暴雨洪涝灾害风险评估[J]. 暴雨灾害, 2015, 34(4): 384-387.
  [Xie Wusan, Tian Hong, Lu Yanyu. Risk evaluation of rainstorm and flood disasters in Datong River Basin based on the FloodArea model[J]. Torrential Rain and Disasters, 2015, 34(4): 384-387.]
[7] 郑璟, 谭畅, 李春梅. 基于洪水淹没模型的山洪致灾临界雨量确定方法研究[C]// 宋军, 李景涛. 湖泊湿地与绿色发展——第五届中国湖泊论坛论文集. 长春: 吉林人民出版社, 2015: 98-102.
  [Zheng Jing, Tan Chang, Li Chunmei. The method of critical rainfall determination of mountain flood based on flood inundation model was studied[C]// Song Jun, Li Jingtao. Lake Wetland and Green Development: Proceedings of the Fifth Chinese Lake, BBS. Changchun: Jilin People’s Press, 2015: 98-102.]
[8] 陈晓丹. 基于FloodArea的山洪淹没灾害预警研究[D]. 长沙: 湖南师范大学, 2018.
  [Chen Xiaodan. Research on flash flood inundation disaster warning based on FloodArea[D]. Changsha: Hunan Normal University, 2018.]
[9] 张明达, 李蒙, 戴丛蕊, 等. 基于FloodArea模型的云南山洪淹没模拟研究[J]. 灾害学, 2016, 31(1): 78-82.
  [Zhang Mingda, Li Meng, Dai Congrui, et al. Simulation study of flood in Yunnan based on the FloodArea model[J]. Journal of Catastrophology, 2016, 31(1): 78-82.]
[10] 卢燕宇, 邓汗青, 田红, 等. 改进的暴雨洪水淹没模拟算法及其在淮河流域的应用研究[J]. 气象科技进展, 2020, 10(5): 121-129.
  [Lu Yanyu, Deng Hanqing, Tian Hong, et al. Improved rainstorm flood simulation algorithm and its application in Huaihe River Basin[J]. Advances in Meteorological Science and Technology, 2020, 10(5): 121-129.]
[11] 张连成, 江远安, 刘精, 等. 基于FloodArea模型的新疆山洪淹没模拟及致灾临界雨量阈值的研究——以皮里青河流域为例[J]. 干旱区地理, 2018, 41(1): 48-55.
  [Zhang Liancheng, Jiang Yuanan, Liu Jing, et al. Mountain flood simulation and critical rainfall threshold incurring disaster based on the FloodArea model: A case of Piliqing River Valley as an example[J]. Arid Land Geography, 2018, 41(1): 48-55.]
[12] 张连成, 余行杰, 邵伟玲, 等. 基于不同数据的新疆山洪淹没模拟及致灾阈值分析[J]. 高原气象, 2020, 39(1): 80-89.
  [Zhang Liancheng, Yu Xingjie, Shao Weiling, et al. Comparative analysis of Xinjiang mountain flooding simulation and threshold based on different data[J]. Plateau Meteorology, 2020, 39(1): 80-89.]
[13] 吴秀兰, 江远安, 余行杰, 等. 基于FloodArea的新疆依格孜牙河流域山洪灾害风险区划[J]. 干旱气象, 2019, 37(4): 663-669.
  [Wu Xiulan, Jiang Yuan’an, Yu Xingjie, et al. Study on risk zoning of mountain flood disaster in Yigeziya River of Xinjiang based on FloodArea inundation model[J]. Journal of Arid Meteorology, 2019, 37(4): 663-669.]
[14] 姚俊强, 杨青, 毛炜峄, 等. 基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J]. 高原气象, 2018, 37(1): 68-77.
  [Yao Junqiang, Yang Qing, Mao Weiyi, et al. Analysis of a summer rainstorm water vapor paths in Tianshan Mountains (Xinjiang) based on HYSPLIT4 model[J]. Plateau Meteorology, 2018, 37(1): 68-77.]
[15] 潘旸, 谷军霞, 徐宾, 等. 多源降水数据融合研究及应用进展[J]. 气象科技进展, 2018, 8(1): 143-152.
  [Pan Yang, Gu Junxia, Xu Bin, et al. Advances in multi-source precipitation merging research[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 143-152.]
[16] 许冠宇, 李琳琳, 田刚, 等. 国家级降水融合产品在长江流域的适用性评估[J]. 暴雨灾害, 2020, 39(4): 400-408.
  [Xu Guanyu, Li Linlin, Tian Gang, et al. Assessing the applicability of national precipitation merged products in the Yangtze River Basin[J]. Torrential Rain and Disasters, 2020, 39(4): 400-408.]
[17] 李鹤, 李玉建, 俞晓伟, 等. 苏巴什水库泄水建筑物消能防冲优化试验研究[J]. 水利技术监督, 2020(6): 156-160.
  [Li He, Li Yujian, Yu Xiaowei, et al. Experimental study on optimization of energy dissipation and erosion control of drainage structure of Xinjiang Subashi Reservoir[J]. Technical Supervision in Water Resources, 2020(6): 156-160.]
[18] 孔灿. 新疆柯坪苏巴什水库水雨情预警系统设计及运行管理探讨[J]. 地下水, 2022, 44(1): 230-232.
  [Kong Can. Design and operation management of water and rain warning system in Subashi Reservoir of Keping, Xinjiang[J]. Ground Water, 2022, 44(1): 230-232.]
[19] Lu M M, You R, Zhang W J. A fusing technique with satellite precipitation estimate and rainfall data[J]. Acta Meteorologica Sinica, 2004, 18(2): 141-146.
[20] 王梅霞, 张太西, 余行杰, 等. 新疆哈密2018·7·31特大暴雨山洪汇水量估算与应用研究[J]. 干旱区地理, 2020, 43(4): 939-945.
  [Wang Meixia, Zhang Taixi, Yu Xingjie, et al. Estimation and application of water-collecting amount during an extreme heavy rainfall induced flash flooding in Hami City on 31st July 2018[J]. Arid Land Geography, 2020, 43(4): 939-945.]
[21] 罗尊骅, 林广发, 张容焱, 等. FloodArea模型糙率系数改进方法[J]. 海南师范大学学报(自然科学版), 2018, 31(1): 98-104.
  [Luo Zunhua, Lin Guangfa, Zhang Rongyan, et al. An improved method of calculating roughness coefficient for FloodArea[J]. Journal of Hainan Normal University (Natural Science Edition), 2018, 31(1): 98-104.]
[22] 郭玉琳, 赵勇, 周雅蔓, 等. 新疆天山山区夏季降水日变化特征及其与海拔高度关系[J]. 干旱区地理, 2022, 45(1): 57-65.
  [Guo Yulin, Zhao Yong, Zhou Yaman, et al. Diurnal variation of summer precipitation and its relationship with altitude in Tianshan Mountains of Xinjiang[J]. Arid Land Geography, 2022, 45(1): 57-65.]
[23] 胡轶佳, 吴欣原, 李荔珊, 等. 基于年际增量法的中国西部山区夏季降水统计预测研究[J]. 气象与减灾研究, 2019, 42(3): 161-169.
  [Hu Yijia, Wu Xinyuan, Li Lishan, et al. Study on the prediction of precipitation in the mountainous areas of western China using the year-to-year increment method[J]. Meteorology and Disaster Reduction Research, 2019, 42(3): 161-169.]
[24] 张雯, 马阳, 王岱, 等. 不同时间尺度海温因子对西北地区东部夏季降水的影响及预测[J]. 干旱区研究, 2023, 40(4): 532-542.
  [Zhang Wen, Ma Yang, Wang Dai, et al. The influence and prediction of SST predictors at different timescales on summer precipitation over the eastern part of northwest China[J]. Arid Zone Research, 2023, 40(4): 532-542.]
[25] 赵泽艺, 李朝阳, 王洪博, 等. 南疆盐碱土水、氮、盐光谱特征及其反演模型[J]. 灌溉排水学报, 2023, 42(7): 93-100.
  [Zhao Zeyi, Li Zhaoyang, Wang Hongbo, et al. Spectral characteristics and inversion model of water, nitrogen and salt in saline soil in southern Xinjiang[J]. Journal of Irrigation and Drainage, 2023, 42(7): 93-100.]
文章导航

/