基于贺兰山青海云杉(Picea crassifolia)树轮对过去202 a最低气温的重建
收稿日期: 2023-08-03
修回日期: 2023-09-03
网络出版日期: 2024-07-09
基金资助
中国季风-大陆过渡带树轮多指标的水文气候信号挖掘及其响应机制;国家自然科学基金(52069019);国家自然科学基金(51669016);“草原英才”滚动支持项目
Reconstruction of the minimum temperature over the past 202 years based on tree rings of Picea crassifolia in the Helan Mountains
Received date: 2023-08-03
Revised date: 2023-09-03
Online published: 2024-07-09
在全球变暖的影响下,全球水文气候发生深刻变化,而季风与非季风过渡带地区气候复杂多样,所以摸清该地区过去长期气候变化规律是亟待解决的问题。利用36棵青海云杉(Picea crassifolia)的66个树轮样芯建立了季风与非季风过渡带典型地区(中国贺兰山地区)1798—2016年(219 a)的青海云杉树轮宽度年表,并且通过皮尔逊相关法分析了树轮宽度年表与该地气候因子的相关性。结果表明:(1) 青海云杉径向生长与该地的年平均最低温(R2=0.638,P<0.001)关系密切,利用线性回归方程重建贺兰山1815—2016年年平均最低温序列,重建方程的缩减误差和有效系数分别为0.808、0.482。(2) 重建的年平均最低温序列在19世纪整体气温偏低,与学术界公认的“小冰期”一致,到19世纪后期,气温逐渐回升,并且气温序列出现了显著的暖期和极暖年,气温在19世纪50和90年代以及20世纪90年代发生3次气温突变。(3) Morlet小波分析显示了6 a、21 a和46~56 a的周期性分布特征。南方涛动、太平洋十年涛动和大西洋多年代际涛动是这种周期性变化的驱动因素。(4) 大尺度空间相关分析表明重建的气温序列对大尺度区域的气温变化具有较好的空间表征,如内蒙古大部和宁夏大部。进而重建的季风与非季风过渡带典型地区年平均最低气温序列揭示了该地的气候变化特征,为全球气候变化研究提供参考。
张晶 , 马龙 , 刘廷玺 , 孙柏林 , 乔子戌 . 基于贺兰山青海云杉(Picea crassifolia)树轮对过去202 a最低气温的重建[J]. 干旱区地理, 2024 , 47(6) : 909 -921 . DOI: 10.12118/j.issn.1000-6060.2023.400
Under the influence of global warming, profound changes are occurring in the global hydroclimatic system. Understanding the long-term climate patterns in monsoon and nonmonsoon transitional zones is crucial owing to their complex and diverse climates. Utilizing 66 tree-ring cores from 36 Picea crassifolia trees, a dendrochronological chronology from 1798 to 2016 (219 years) was established for a typical area in the transitional zone (Helan Mountains region, northwest China). The Pearson correlation method was used to analyze the relationship between tree-ring widths and local climatic factors. The results show that: (1) The radial growth of Picea crassifolia closely correlates with the area’s annual average minimum temperature (R2=0.638, P<0.001). A linear regression equation was used to reconstruct the annual average minimum temperature series for Helan Mountains from 1815 to 2016, with a reduction error and coefficient of efficiency of 0.808 and 0.482, respectively. (2) The reconstructed series generally indicates lower temperatures in the 19th century, consistent with the globally recognized “Little Ice Age”. From the late 19th century, temperatures gradually increased, showing significant warm periods and extremely warm years, with three abrupt temperature shifts in the 1850s, 1890s, and 1990s. (3) Morlet wavelet analysis shows the periodic distribution characteristics of 6 a, 21 a and 46-56 a. Southern Oscillation, Pacific Decadal Oscillation, and Atlantic Multidecadal Oscillation are the driving factors behind these periodic changes. (4) Large-scale spatial correlation analysis indicates that the reconstructed temperature series represents the temperature variations well in large regions like most of Inner Mongolia and Ningxia. The reconstructed annual average minimum temperature series for this typical monsoon and nonmonsoon transitional zone reveals its climatic characteristics, providing a reference for global climate change research.
[1] | 王婷, 于丹, 李江风, 等. 树木年轮宽度与气候变化关系研究进展[J]. 植物生态学报, 2003, 27(1): 23-33. |
[Wang Ting, Yu Dan, Li Jiangfeng, et al. Advances in research on the relationship between climatic change and tree-ring width[J]. Acta Phytoecologica Sinica, 2003, 27(1): 23-33.] | |
[2] | IPCC. Climate change 2021:The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R/OL]. [2021-08-09]. https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf. |
[3] | 刘可祥, 张同文, 张瑞波, 等. 伊犁山区雪岭云杉(Picea schrenkiana)不同树干高度树木径向生长特征及其对气候响应[J]. 干旱区地理, 2022, 45(4): 1010-1021. |
[Liu Kexiang, Zhang Tongwen, Zhang Ruibo, et al. Characteristics of radial growth at different trunk heights of Picea schrenkiana and its climate response in the mountainous area of the Ili Region[J]. Arid Land Geography, 2022, 45(4): 1010-1021.] | |
[4] | Liu Y. Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau[J]. Chinese Science Bulletin, 2011, 56(28-29): 2986-2994. |
[5] | 魏英楠, 马龙, 孙柏林, 等. 基于红皮云杉(Picea koraiensis)重建大兴安岭南麓历史径流量[J]. 干旱区地理, 2023, 46(8): 1269-1278. |
[Wei Yingnan, Ma Long, Sun Bolin, et al. Reconstruction of historical runoff in the southern foothills of the Da Hinggan Ling Mountains based on Picea koraiensis[J]. Arid Land Geography, 2023, 46(8): 1269-1278.] | |
[6] | 孙国华, 步之媛. 长历史时间尺度水文气候学研究进展[J]. 内蒙古水利, 2020(5): 10-11. |
[Sun Guohua, Bu Zhiyuan. Research progress of hydroclimatology on long historical time scale[J]. Inner Mongolia Water Resources, 2020(5): 10-11.] | |
[7] | Malik R, Sukumar R. June-July temperature reconstruction of Kashmir valley from tree rings of Himalayan Pindrow Fir[J]. Atmosphere, 2021, 12(410): 1-12. |
[8] | Stambaugh M C, Bigelow S W, Abadir E R. Linkages between forest growth, climate, and agricultural production are revealed through analysis of seasonally-partitioned longleaf pine (Pinus palustris Mill.) tree rings[J]. Dendrochronologia, 2020, 65: 125801, doi: 10.1016/j.dendro.2020.125801. |
[9] | 王丽丽. 利用兴安落叶松树轮最大晚材密度重建大兴安岭北部5—8月气温变化[J]. 科学通报, 2012, 57: 2007-2014. |
[Wang Lili. Reconstructing mean maximum temperatures of May-August from tree-ring maximum density in north Da Hinggan Mountains, China[J]. Chinese Science Bulletin, 2012, 57: 2007-2014.] | |
[10] | 华亚伟, 张红娟, 刘康. 基于油松树轮重建陕西省镇安县165年以来3—4月平均最高气温[J]. 应用生态学报, 2020, 31(2): 381-387. |
[Hua Yawei, Zhang Hongjuan, Liu Kang. Reconstruction of the March-April average maximum air temperature over 165 years based on Pinus tabuliformis tree-rings of Zhen’an County, Shaanxi Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 381-387.] | |
[11] | Lopez L, Stahle D, Villalba R, et al. Tree ring reconstructed rainfall over the southern Amazon Basin[J]. Geophysical Research Letters, 2017, 44(14): 7410-7418. |
[12] | Pearl J K, Anchukaitis K J, Donnelly J P, et al. A late Holocene subfossil Atlantic white cedar tree-ring chronology from the northeastern United States[J]. Quaternary Science Reviews, 2020, 228(C): 106104, doi: 10.1016/j.quascirev.2019.106104. |
[13] | Buckley B M, Wilson R J, Kelly P E, et al. Inferred summer precipitation for southern Ontario back to AD 610, as reconstructed from ring widths of Thuja occidentalis[J]. Canadian Journal of Forest Research, 2004, 34(12): 2541-2553. |
[14] | Pritzkow C, Wazny T, Heuner K U, et al. Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robu) in N-Poland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 520-530. |
[15] | Gregory C W, Olga S, Rosanne D A, et al. Reconstructed summer temperatures over the last 400 years based on larch ring widths: Sakhalin Island, Russian Far East[J]. Climate Dynamics Observational Theoretical & Computational Research on the Climate System, 2014, 45(1-2): 397-405. |
[16] | Imnek V, Vacek Z, Vacek S, et al. Tree rings of European Beech (Fagus Sylvatica L.) Indicate the relationship with solar cycles during climate change in central and southern Europe[J]. Forests, 2021, 12(3): 259, doi: 10.3390/F12030259. |
[17] | Mohsen A, Jassi G, Kambiz P, et al. Multi-centennial reconstruction of drought events in south-western Iran using tree rings of Mediterranean cypress (Cupressus sempervirens L.)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021(21): 110296, doi: 10.1016/j.palaeo.2021.110296. |
[18] | ünal A, Nesibe K, Arailym K, et al. October to July precipitation reconstruction for Burabai region (Kazakhstan) since 1744[J]. International Journal of Biometeorology, 2020, 64(5): 803-813. |
[19] | Hiroyuki T, Takeshi N, Koji Y, et al. Summer relative humidity in northern Japan inferred from δ18O values of the tree ring in (1776—2002 AD): Influence of the paleoclimate indices of atmospheric circulation[J]. Journal of Geophysical Research, 2008, 113: D18103, doi: 10.1029/2007JD009080. |
[20] | Huang R, Zhu H, Liang E, et al. A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE[J]. Climate Dynamics, 2019, 53(5): 3221-3233. |
[21] | 赵晓恩, 岳伟鹏, 高志鸿, 等. 河谷澜沧黄杉指示的青藏高原东南地区过去205年干湿变化[J]. 应用生态学报, 2021, 32(10): 3643-3652. |
[Zhao Xiao’en, Yue Weipeng, Gao Zhihong, et al. Changes of wet and dry climate in the past 205 years indicated by Pseudotsuga forrestii of river valley from southeastern Tibetan Plateau, China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3643-3652.] | |
[22] | Keyimu M, Li Z, Zhang G, et al. Tree ring-based minimum temperature reconstruction in the central Hengduan Mountains, China[J]. Theoretical and Applied Climatology, 2020, 141(1/2): 359-370. |
[23] | Liu Y, Cai Q, Shi J, et al. Seasonal precipitation in the south-central Helan Mountain region, China, reconstructed from tree-ring width for the past 224 years[J]. Canadian Journal of Forest Research, 2005, 35(10): 2403-2412. |
[24] | 陈峰, 袁玉江, 魏文寿, 等. 树轮记录的贺兰山北部5—7月PDSI变化[J]. 气候变化研究进展, 2010, 6(5): 344-348. |
[Chen Feng, Yuan Yujiang, Wei Wenshou, et al. Long-term drought severity variations recorded in tree rings in the northern Helan Mountains[J]. Advances in Climate Change Research, 2010, 6(5): 344-348.] | |
[25] | Li J, Chen F, Cook E R, et al. Drought reconstruction for north central China from tree rings: The value of the Palmer drought severity index[J]. International Journal of Climatology, 2007, 27(7): 903-909. |
[26] | 陈峰, 袁玉江, 魏文寿, 等. 树轮记录的贺兰山北部近208年5—7月温度变化[J]. 应用气象学报, 2011, 22(4): 463-471. |
[Chen Feng, Yuan Yujiang, Wei Wenshou, et al. May-July temperature variability since 1801 infered from tree rings of Pinus tabuliformis of Helan Mountains in China[J]. Journal of Applied Meteorological Science, 2011, 22(4): 463-471.] | |
[27] | Malcolm K H, Alexander O, Andrew G B, et al. Different climate responses of spruce and pine growth in northern European Russia[J]. Dendrochronologia, 2019, 56: 125601, doi: 10.1016/j.dendro.2019.05.005. |
[28] | 詹思敏, 王可逸, 张凌楠, 等. 祁连山东部不同树种径向生长对气候因子的响应[J]. 生态学杂志, 2019, 38(7): 2007-2014. |
[Zhan Simin, Wang Keyi, Zhang Lingnan, et al. Species-specific growth responses to climatic factors in the eastern Qilian Mountains[J]. Chinese Journal of Ecology, 2019, 38(7): 2007-2014.] | |
[29] | Zhang R B, Yuan Y J, Yu S L, et al. Past changes of spring drought in the inner Tianshan Mountains, China, as recorded by tree rings[J]. Boreas, 2017, 46(4): 688-696. |
[30] | Huang R, Zhu H, Liang E, et al. A tree-ring-based summer (June-July) minimum temperature reconstruction for the western Kunlun Mountains since AD 1681[J]. Theoretical and Applied Climatology, 2019, 138(1-2): 673-682. |
[31] | Shen C C, Wang L L, Li M Y. The altitudinal variability and temporal instability of the climate-tree-ring growth relationships for Changbai larch (Larix olgensis Henry) in the Changbai Mountains area, Jilin, Northeastern China[J]. Trees, 2016, 30(3): 901-912. |
[32] | Keyimu M, Li Z S, Zhang G S, et al. Tree ring-based minimum temperature reconstruction in the central Hengduan Mountains, China[J]. Theoretical and Applied Climatology, 2020, 141(1/2): 359-370. |
[33] | Liu Y, Wang L, Li Q, et al. Asian summer monsoon-related relative humidity recorded by tree ring δ18O during last 205 years[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(17/18): 9824-9838. |
[34] | Wang T, Bao A, Xu W Q, et al. Tree-ring-based assessments of drought variability during the past 400 years in the Tianshan Mountains, arid Central Asia[J]. Ecological Indicators, 2021, 126: 107702, doi: 10.1016/j.ecolind.2021.107702. |
[35] | Zhao Y J, Keyimu M, Li Z S, et al. Summer mean temperature reconstruction during the past 285 years based on tree-ring in northern Gaoligong Mountains, northwestern Yunnan of China[J]. Geografiska Annaler: Series A, Physical Geography, 2021, 103(1): 69-82. |
[36] | 肖健宇, 张文艳, 牟玉梅, 等. 树木年轮揭示的东灵山主要树种间干旱耐受性差异[J]. 应用生态学报, 2021, 32(10): 3487-3496. |
[Xiao Jianyu, Zhang Wenyan, Mou Yumei, et al. Differences of drought tolerance of the main tree species in Dongling Mountain, Beijing, China as indicated by tree rings[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3487-3496.] | |
[37] | 张辉, 张芸, 胡亚楠, 等. 气候变暖背景下杉木年轮密度对气候因子的响应[J]. 生态学报, 2021, 41(4): 1551-1563. |
[Zhang Hui, Zhang Yun, Hu Ya’nan, et al. Response of tree ring density to climatic factors of Cunninghamia lanceolata under climate warming[J]. Acta Ecologica Sinica, 2021, 41(4): 1551-1563.] | |
[38] | Zhang Y, Shao X M, Yin Z Y, et al. Millennial minimum temperature variations in the Qilian Mountains, China: Evidence from tree rings[J]. Climate of the Past, 2014, 10(5): 1763-1778. |
[39] | White P B, Soulé P, Van D G S. Impacts of human disturbance on the temporal stability of climate-growth relationships in a red spruce forest, southern Appalachian Mountains, USA[J]. Dendrochronologia, 2014, 32(1): 71-77. |
[40] | Shi C, Masson-Delmotte V D, Li Z S, et al. Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from alpine treeline dendrochronology[J]. Climate Dynamics, 2015, 45(5-6): 1367-1380. |
[41] | Nagavciuc V, Ionita M, Kern Z, et al. A 700 years perspective on the 21st century drying in the eastern part of Europe based on δ18O in tree ring cellulose[J]. Communications Earth & Environment, 2022, 3(1): 277, doi: 10.1038/s43247-022-00605-4. |
[42] | Isabella A, Christine L, María E F, et al. A network for advancing dendrochronology, dendrochemistry and dendrohydrology in south America[J]. Tree-Ring Research, 2020, 76(2): 94-101. |
[43] | Hosoo Y, Yoshida M, Imai T, et al. Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids[J]. Planta, 2002, 215: 1006-1012. |
[44] | Jiang Y G, Cao Y T, Zhang J H, et al. A 168-year temperature recording based on tree rings and latitude differences in temperature changes in northeast China[J]. International Journal of Biometeorology, 2021, 65(11): 1-12. |
[45] | Yu D P, Wang Q W, Wang Y, et al. Climatic effects on radial growth of major tree species on Changbai Mountain[J]. Annals of Forest Science, 2011, 68(5): 921-933. |
[46] | Sun B L, Ma L, Liu T X, et al. Temperature reconstruction based on 361 year old dendrochronology of Platycladus orientalis (L.) franco in the Wula Mountains, China[J]. Quaternary International, 2020, 583: 94-102. |
[47] | Jiang Y, Wang Y, Zhang J, et al. Tree-ring reconstruction of June-July mean temperatures in the northern Daxing’an Mountains, China[J]. Geochronometria, 2020, 47(1): 13-22. |
[48] | Li T, Liu Y, Cai Q F, et al. Water stress-induced divergence growth of Picea schrenkiana in the western Tianshan and its forcing mechanisms[J]. Forests, 2023, 14(2): 354, doi: 10.3390/f14020354. |
[49] | Jiao L, Wang S J, Jiang Y, et al. A 333-year record of the mean minimum temperature reconstruction in the western Tianshan Mountains, China[J]. Geochronometria, 2019, 46(1): 37-48. |
[50] | 沈建国. 中国气象灾害大典·内蒙古卷[M]. 北京: 气象出版社, 2008. |
[Shen Jianguo. China meteorological disaster encyclopedia: Inner Mongolia volume[M]. Beijing: China Meteorological Press, 2008.] |
/
〈 | 〉 |