气候与水文

青藏高原大通河流域径流变化归因分析

  • 王淑芝 ,
  • 温得平
展开
  • 1.青海省水文水资源测报中心,青海 西宁 810001
    2.青海省水旱灾害防御服务中心,青海 西宁 810001
王淑芝(1988-),女,工程师,主要从事水文监测与分析计算方面的研究. E-mail: qhswjcb@163.com
温得平(1989-),男,高级工程师,主要从事气候变化、水文水资源演变、水文分析计算等方面的研究. E-mail: wendeping5@163.com

收稿日期: 2023-03-21

  修回日期: 2023-08-01

  网络出版日期: 2024-03-14

基金资助

青海高原典型河湖生态安全立体监测及预警关键技术研究项目(2020-SF-151)

Attribution analysis of runoff change in the Datong River Basin, Qinghai-Tibet Plateau

  • WANG Shuzhi ,
  • WEN Deping
Expand
  • 1. Hydrology and Water Resources Forecast Center of Qinghai Province, Xining 810001, Qinghai, China
    2. Qinghai Province Flood and Drought Disaster Prevention Service Center, Xining 810001, Qinghai, China

Received date: 2023-03-21

  Revised date: 2023-08-01

  Online published: 2024-03-14

摘要

大通河流域地处青藏高原东北部边缘,生态环境敏感脆弱,开展变化环境下水资源演变、归因研究对保护区域水生态环境,保障水生态文明建设具有十分重要的意义。采用线性倾向估计、集中度、集中期、有序聚类检验、小波分析等统计方法,分析了流域径流的年际变化、年内分配、周期和突变变化特征,基于累积量斜率变化率法和双累积曲线定量评估了气候因素和人类活动对径流变化的影响。结果表明:(1) 近60 a大通河流域气候暖湿化明显,年平均气温、降水量、潜在蒸发量增幅分别为0.42 ℃·(10a)-1和8.9 mm·(10a)-1、5.6 mm·(10a)-1,年径流呈减少趋势,倾向率0.67×108 m3·(10a)-1。(2) 径流集中度和不均匀系数呈微弱下降趋势,枯季径流增加趋势明显,年内分配更趋于均匀,集中期有推迟趋势,延迟速率为3.0 d·(10a)-1。(3) 年径流在44 a左右尺度上周期震荡明显,突变发生在1990年,突变后径流量减少3.52×108 m3,流域冰川分布呈减小趋势,植被覆盖无显著变化。(4) 气候、人类活动对大通河径流减少的贡献率分别为-17.7%和117.7%,降水量是流域来水的主要补给来源,跨流域调水是引起径流减小的主要驱动因素。

本文引用格式

王淑芝 , 温得平 . 青藏高原大通河流域径流变化归因分析[J]. 干旱区地理, 2024 , 47(2) : 203 -213 . DOI: 10.12118/j.issn.1000-6060.2023.124

Abstract

The Datong River Basin is located on the northeastern edge of the Qinghai-Tibet Plateau and is a sensitive and fragile ecological environment. It is of great significance to conduct research on the evolution and attribution of water resources in changing environments for the protection of the water ecological environment in the area and the construction of water ecocivilization. Statistical methods such as linear regression, concentration degree, concentration period, ordered clustering test, and wavelet analysis were used to analyze the characteristics of annual variation, seasonal distribution, periodicity, and abrupt changes in basin runoff. On the basis of the cumulative slope change rate method and double cumulative curve, the effects of climate factors and human activities on runoff changes were quantitatively evaluated. The results showed the following: (1) The climate in the Datong River Basin had warmed and humidified significantly in the past 60 years, with increases in average annual temperature, precipitation, and potential evapotranspiration of 0.42 ℃·(10a)-1, 8.9 mm·(10a)-1, and 5.6 mm·(10a)-1, respectively. The annual runoff showed a decreasing trend, with a tendency rate of 0.67×108 m3·(10a)-1. (2) The concentration degree and uneven coefficient of runoff showed a weak downward trend, and the increasing dry season runoff trend was evident. The seasonal distribution was more uniform, and the concentration period showed a delayed trend, with a delay rate of 3.0 d·(10a)-1. (3) The annual runoff oscillated significantly at a scale of approximately 44 years, and the mutation occurred in 1990. After the mutation, runoff decreased by 3.52×108 m3. The distribution of glaciers in the basin showed a decreasing trend, whereas the vegetation cover did not show a significant change. (4) The contributions of climate and human activities to the runoff decrease in the Datong River were -17.7% and 117.7%, respectively. Precipitation was the main source of water supply in the Datong River Basin, and interbasin water transfer was the main driving factor for runoff reduction.

参考文献

[1] 张建云, 王国庆. 河川径流变化及归因定量识别[M]. 北京: 科学出版社, 2014.
  [ Zhang Jianyun, Wang Guoqing. Quantitative identification of river runoff change and attribution[M]. Beijing: Science Press, 2014. ]
[2] 杜嘉妮, 蔡宜晴, 刘希胜, 等. 基于Budyko假设的湟水径流变化归因识别[J]. 中国农村水利水电, 2022(7): 116-121.
  [ Du Jiani, Cai Yiqing, Liu Xisheng, et al. Attribution analysis of runoff in the Huangshui River based on the Budyko hypothesis[J]. China Rural Water and Hydropower, 2022(7): 116-121. ]
[3] 吴恒卿, 刘赛艳, 黄强, 等. 基于SWAT模型的大通河流域径流模拟[J]. 西北农林科技大学学报(自然科学版), 2015, 43(9): 210-216.
  [ Wu Hengqing, Liu Saiyan, Huang Qiang, et al. SWAT model based runoff simulation of Datong River Basin[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(9): 210-216. ]
[4] 白雁翎, 王芳, 刘扬. 大通河上游径流演变及驱动因素定量分析[J]. 南水北调与水利科技, 2021, 19(1): 103-110, 167.
  [ Bai Yanling, Wang Fang, Liu Yang. Quantitative analysis of runoff evolution and driving factors in the upper reaches of Datong River[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(1): 103-110, 167. ]
[5] 王大超. 大通河径流变化特征及其影响因素探析[D]. 兰州: 兰州大学, 2019.
  [ Wang Dachao. Runoff variation characteristics for Datong River and its influencing factors[D]. Lanzhou: Lanzhou University, 2019. ]
[6] 张成凤, 刘翠善, 王国庆, 等. 基于Budyko假设的黄河源区径流变化归因识别[J]. 中国农村水利水电, 2020(9): 90-94.
  [ Zhang Chengfeng, Liu Cuishan, Wang Guoqing, et al. Attribution of runoff variation for the Yellow River source region based on the Budyko hypothesis[J]. China Rural Water and Hydropower, 2020(9): 90-94. ]
[7] 王随继, 闫云霞, 颜明, 等. 皇甫川流域降水和人类活动对径流量变化的贡献率分析——累积量斜率变化率比较方法的提出及应用[J]. 地理学报, 2012, 67(3): 388-397.
  [ Wang Suiji, Yan Yunxia, Yan Ming, et al. Contributions of precipitation and human activities to the runoff change of the Huangfuchuan Drainage Basin: Application of comparative method of the slope changing ratio of cumulative quantity[J]. Acta Geographica Sinica, 2012, 67(3): 388-397. ]
[8] 郭爱军, 畅建霞, 黄强, 等. 渭河流域气候变化与人类活动对径流影响的定量分析[J]. 西北农林科技大学学报(自然科学版), 2014, 42(8): 212-220.
  [ Guo Aijun, Chang Jianxia, Huang Qiang, et al. Quantitative analysis of the impacts of climate change and human activities on runoff change in Weihe Basin[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(8): 212-220. ]
[9] 李佳, 汪赢政, 李建江. 祁连山地区冰川边界产品(1980—2015)[DB]. 国家青藏高原科学数据中心, https://doi.org/10.11888/Geogra.tpdc.270234.
  [ Li Jia, Wang Yingzheng, Li Jianjiang. Glacier outlines over the Qilian Mountain area (1980—2015)[DB]. National Tibetan Plateau/Third Pole Environment Data Center, https://doi.org/10.11888/Geogra.tpdc.270234. ]
[10] 仲波, 吴俊君. 祁连山区域基于Landsat 反射率数据的月度30 m×30 m地表植被指数数据(1986—2017)[DB]. 国家青藏高原科学数据中心, https://doi.org/10.1188/Geogra.tpdc.270136.
  [ Zhong Bo, Wu Junjun. Landsat-based continuous monthly 30 m×30 m land surface NDVI dataset in Qilian Mountain area (1986—2017)[DB]. National Tibetan Plateau/Third Pole Environment Data Center, https://doi.org/10.1188/Geogra.tpdc.270136. ]
[11] GB/T20481-2017. 中华人民共和国国家标准: 气象干旱等级[S]. 北京: 中国标准出版社, 2017.
  GB/T20481-2017. National Standard of the People’s Republic of China: Grades of meteorological drought[S]. Beijing: Standard Press of China, 2017. ]
[12] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007.
  [ Wei Fengying. Modern technology of statistics, diagnosis and forecast for climate[M]. Beijing: China Meteorological Press, 2007. ]
[13] 黄强, 黄生志, 潘晶晶. 水文序列变异诊断理论与方法[M]. 北京: 科学出版社, 2020.
  [ Huang Qiang, Huang Shengzhi, Pan Jingjing. Theory and methods of hydrological sequence variation diagnosis[M]. Beijing: Science Press, 2020. ]
[14] 成艺, 武兰珍, 刘峰贵, 等. 黄河上游近60 a径流量与降水量变化特征研究[J]. 干旱区地理, 2022, 45(4): 1022-1031.
  [ Cheng Yi, Wu Lanzhen, Liu Fenggui, et al. Changes of runoff and precipitation in the upstream of Yellow River during the past 60 years[J]. Arid Land Geography, 2022, 45(4): 1022-1031. ]
[15] 蔡宜晴, 李文辉, 于泽兴, 等. 长江源区降水时空演变规律[J]. 长江科学院院报, 2022, 39(5): 28-35.
  [ Cai Yiqing, Li Wenhui, Yu Zexing, et al. Temporal and spatial evolution of precipitation in the headwaters of the Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(5): 28-35. ]
[16] 杨阳, 时璐, 刘弢, 等. 青海省西北诸河61 a来降水演变特征及空间分布研究[J]. 中国农村水利水电, 2020(8): 159-165.
  [ Yang Yang, Shi Lu, Liu Tao, et al. The evolution characteristics and spatial distribution of precipitation in northwest region of Qinghai in recent 61 years[J]. China Rural Water and Hydropower, 2020(8): 159-165. ]
[17] 刘宇, 管子隆, 田济扬, 等. 近70 a泾河流域径流变化及其驱动因素研究[J]. 干旱区地理, 2022, 45(1): 17-26.
  [ Liu Yu, Guan Zilong, Tian Jiyang, et al. Runoff change and its driving factors in Jinghe River Basin in recent 70 years[J]. Arid Land Geography, 2022, 45(1): 17-26. ]
[18] 穆兴民, 张秀勤, 高鹏, 等. 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文, 2010, 30(4): 47-51.
  [ Mu Xingming, Zhang Xiuqing, Gao Peng, et al. Theory of double mass curves and its applications in hydrology and meteorology[J]. Chinese Journal of Hydrological, 2010, 30(4): 47-51. ]
[19] 关颖慧, 王淑芝, 温得平. 长江源区水沙变化特征及成因分析[J]. 泥沙研究, 2021, 46(3): 43-49, 56.
  [ Guan Yinghui, Wang Shuzhi, Wen Deping. Variations and cause analysis of runoff and sediment load in the source regions of Yangtze River[J]. Journal of Sediment Research, 2021, 46(3): 43-49, 56. ]
[20] Alexander L V, Allen S K, Bindoff N L, et al. Summary for policymakers[M]// IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013.
[21] 杨大文, 张树磊, 徐翔宇. 基于水热耦合平衡方程的黄河流域径流变化归因分析[J]. 中国科学: 技术科学, 2015, 45(10): 1024-1034.
  [ Yang Dawen, Zhang Shulei, Xu Xiangyu. Attribution analysis for runoff decline in Yellow River Basin during past fifty years based on Budyko hypothesis[J]. Scientia Sinica Technologica, 2015, 45(10): 1024-1034. ]
文章导航

/