生物与土壤

基于GEE平台渭库绿洲棉花水分生产率遥感估算

  • 何旭刚 ,
  • 买买提·沙吾提 ,
  • 盛艳芳 ,
  • 李荣鹏
展开
  • 1.新疆大学地理与遥感科学学院,新疆 乌鲁木齐 830046
    2.新疆绿洲生态重点实验室,新疆 乌鲁木齐 830046
    3.智慧城市与环境建模自治区普通高校重点实验室,新疆 乌鲁木齐 830046
何旭刚(1995-),男,硕士研究生,主要从事农业遥感与农作物高效用水等方面的研究. E-mail: hexugang@stu.xju.edu.cn

收稿日期: 2022-11-21

  修回日期: 2022-12-22

  网络出版日期: 2023-11-10

基金资助

新疆自然科学计划(自然科学基金)联合基金项目(2021D01C055)

Remote sensing estimation of cotton water productivity in Ugan-Kuqa River Oasis based on Google Earth Engine

  • Xugang HE ,
  • SAWUT Mamat ,
  • Yanfang SHENG ,
  • Rongpeng LI
Expand
  • 1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, Xinjiang, China
    3. Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi 830046, Xinjiang, China

Received date: 2022-11-21

  Revised date: 2022-12-22

  Online published: 2023-11-10

摘要

作物水分生产率的准确和定量化评价是提高干旱区作物产量的基础,对缓解水资源短缺和农业可持续发展具有重要意义。以塔里木盆地北岸的渭干河-库车河绿洲(渭库绿洲)为典型区域,基于Google Earth Engine(GEE)云平台,通过建立2009—2020年流域SEBAL遥感蒸散发模型、棉花分布识别模型及估产模型,对流域棉花水分生产率进行评价。结果表明:(1) 渭库绿洲棉花产量从2009年的1610.10 kg·hm-2增长到2020年的1855.05 kg·hm-2,增长率为13.20%,棉花种植面积逐年向绿洲边缘延伸,棉花产量重心整体自西向东移动2485 m。(2) 棉花生长期2009年蒸散发均值为686.80 mm,2020年为738.66 mm,整体呈上升趋势,其增长率为7.02%,棉花生长期蒸散发最大值为花铃期和吐絮期,蒸散发较高值主要分布在绿洲内部与塔里木河北岸边缘。(3) 2009年水分生产率均值为0.21 kg·m-3,2020年均值为0.25 kg·m-3,12 a间水分生产率均值增长率为16%。在空间上,渭库绿洲水分生产率重心在红旗镇自东北向西南移动1832 m,年均移动速度为152.67 m·a-1。绿洲棉花水分生产率呈现东西方向大于南北方向扩张趋势,空间分布方向趋势增强,空间格局趋向集聚化。(4) 12 a间产量的增长速度超过了蒸散发的上升速度,促使水分生产率提高。其次,水分生产率与棉花种植面积和合理的水量灌溉技术密切相关,水分生产率高值主要分布于沙雅县新垦农场和新和县桑塔木农场,由于农场规模化种植和集约化管理,促进了棉花增产、农业水资源的稳定分配和高效利用。

本文引用格式

何旭刚 , 买买提·沙吾提 , 盛艳芳 , 李荣鹏 . 基于GEE平台渭库绿洲棉花水分生产率遥感估算[J]. 干旱区地理, 2023 , 46(10) : 1632 -1642 . DOI: 10.12118/j.issn.1000-6060.2022.616

Abstract

An accurate and quantitative evaluation of crop water productivity is the basis for the improvement of crop yield in arid regions and is of great significance to alleviate water shortage and drive sustainable agricultural development. We have considered the Ugan-Kuqa River Oasis on the north bank of the Tarim Basin of China as the subject area, and the watershed SEBAL remote sensing evapotranspiration model and cotton distribution identification model are established employing the Google Earth Engine cloud platform from 2009 to 2020. The production estimation model was used to evaluate the moisture productivity of cotton in the watershed. The following results were observed. (1) The cotton production in the Ugan-Kuqa River Oasis ranges from 1610.10 kg·hm-2 in 2009 to 1855.05 kg·hm-2 in 2020, with a growth rate of 13.20%. The cotton planting area extends to the edge of oasis year by year, and the center of gravity of cotton production moves 2485 m from west to east. (2) The average evapotranspiration (ET) value during the cotton growth period was 686.80 mm in 2009 and was 738.66 mm in 2020, indicating an overall upward trend, with a growth rate of 7.02%. The maximum value of ET during the cotton growth period was observed during the flowering and boll-opening stages. The higher ET value is mainly distributed in the interior of the oasis and at the edge of the north bank of the Tarim River. (3) The average water productivity in 2009 and 2020 was 0.21 kg·m-3 and 0.25 kg·m-3, respectively, indicating a growth rate of 16% in 12 years. In terms of space, the gravity center of water productivity in the Ugan-Kuqa River Oasis moved 1832 m from the northeast to the southwest of Hongqi Town, with an average annual moving speed of 152.67 m·a-1. The water productivity of oasis cotton showed an expanding trend in the east-west direction compared with that in the north-south direction. The trend of spatial distribution direction had been enhanced, and the spatial pattern tended to be agglomerated. (4) After 12 years, the increased yield rate exceeded the increased evapotranspiration rate, promoting the increase of water productivity. Moreover, water productivity is closely related to the cotton planting area and reasonable water irrigation technology. High water productivity is mainly distributed in Xinken Farm in Xayar County and Sangtamu Farm in Xinhe County, respectively. The large-scale planting and intensive management of farms promoted and improved cotton production, stable distribution, and efficient use of agricultural water resources.

参考文献

[1] 新华网. 新疆棉花产量占全国90.2%创历史新高[EB/OL]. http://www.news.cn/local/2022-12/27/c_1129236779.htm. 2022-12-27.
[1] [Xinhua Net. Xinjiang’s cotton production accounts for 90.2% of the country’s total, a record high[EB/OL]. http://www.news.cn/local/2022-12/27/c_1129236779.htm. 2022-12-27. ]
[2] 胡栩, 聂勇, 徐霞, 等. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590.
[2] [Hu Xu, Nie Yong, Xu Xia, et al. Monitoring land-use change in Hetian Tarim Basin, China using satellite remote sensing observation between 1990 and 2016[J]. Progress in Geography, 2020, 39(4): 577-590. ]
[3] 张沛, 龙爱华, 海洋, 等. 1988—2015年新疆农业用水时空变化与政策驱动研究——基于农作物水足迹的统计分析[J]. 冰川冻土, 2021, 43(1): 242-253.
[3] [Zang Pei, Long Aihua, Hai Yang, et al. Spatiotemporal variations and driving forces of agricultural water consumption in Xinjiang during 1988—2015: Based on statistical analysis of crop water footprint[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 242-253. ]
[4] 崔远来, 熊佳. 灌溉水利用效率指标研究进展[J]. 水科学进展, 2009, 20(4): 590-598.
[4] [Cui Yuanlai, Xiong Jia. Advances in assessment indicators of irrigation water use efficiency[J]. Advances in Water Science, 2009, 20(4): 590-598. ]
[5] 陈仲新, 郝鹏宇, 刘佳, 等. 农业遥感卫星发展现状及我国监测需求分析[J]. 智慧农业, 2019, 1(1): 32-42.
[5] [Chen Zhongxin, Hao Pengyu, Liu Jia. et al. Technical demands for agricultural remote sensing satellites in China[J]. Smart Agriculture, 2019, 1(1): 32-42. ]
[6] 周柳萍. 基于遥感和气象数据的江苏省水稻水分生产率时空变化研究[D]. 杭州: 浙江大学, 2015.
[6] [Zhou Liuping. Study on temporal and spatial variation of rice water productivity of Jiangsu Province based on remote sensing and meteorological data[D]. Hangzhou: Zhejiang University, 2015. ]
[7] 蒋磊, 杨雨亭, 尚松浩. 基于遥感蒸发模型的干旱区灌区灌溉效率评价[J]. 农业工程学报, 2013, 29(20): 95-101.
[7] [Jiang Lei, Yang Yuting, Shang Songhao. Evaluation on irrigation efficiency of irrigation district in arid region based on evapotranspiration estimated from remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(20): 95-101. ]
[8] 杨建莹. 基于SEBAL模型的黄淮海冬小麦和夏玉米水分生产力研究[D]. 北京: 中国农业科学院, 2014.
[8] [Yang Jianying. Study on water productivity of winter wheat and summer maize based on SEBAL model in Huang-Huai-Hai Plain, China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. ]
[9] Waldhoff G, Lussem U, Bareth G. Multi-data approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 61: 55-69.
[10] Zhou Q, Zhang Y L, Wu F. Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China[J]. Agricultural Water Management, 2021, 246: 106671, doi: org/10.1016/j.agwat.2020.106671.
[11] Ghorbanpour A K, Kisekka I, Afshar A, et al. Crop water productivity mapping and benchmarking using remote sensing and Google Earth Engine cloud computing[J]. Remote Sensing, 2022, 14(19): 4934-4934.
[12] Mauget S, Ulloa M, Mitchell-McCallister D. Simulated irrigation water productivity and related profit effects in US Southern High Plains cotton production[J]. Agricultural Water Management, 2022, 266: 107582, doi: 10.1016/j.agwat.2022.107582.
[13] Chen X P, Qi Z M, Gui D W, et al. Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate[J]. Agricultural Water Management, 2020, 234: 106139, doi: 10.1016/j.agwat.2020.106139.
[14] Thorp K R, Thompson A L, Bronson K F. Irrigation rate and timing effects on Arizona cotton yield, water productivity, and fiber quality[J]. Agricultural Water Management, 2020, 234: 106146, doi:10.1016/j.agwat.2020.106146.
[15] Himanshu S K, Fan Y, Ale S, et al. Simulated efficient growth-stage-based deficit irrigation strategies for maximizing cotton yield, crop water productivity and net returns[J]. Agricultural Water Management, 2021, 250: 106840, doi: 10.1016/j.agwat.2021.106840.
[16] 柯映明. 近60年来渭干河流域耕地与胡杨的时空演变分析[D]. 北京: 中国科学院, 2020.
[16] [Ke Yingming. Spatiotemporal evolution analysis of cropland and Populus euphratica in Weigan River Basin in recent 60 years[D]. Beijing: University of Chinese Academy of Sciences, 2020. ]
[17] 张新焕, 杨德刚, 刘云同. 基于能值的绿洲种植业系统可持续性及敏感性评价——以新疆渭干河流域为例[J]. 生态学报, 2009, 29(11): 6068-6076.
[17] [Zhang Xinhuan, Yang Degang, Liu Yuntong. Emergy-based sustainability and sensitivity analysis of oasis cropping system: A case study in Weigan River Basin[J]. Acta Ecologica Sinica, 2009, 29(11): 6068-6076. ]
[18] Paul M, Rajib A, Negahban-Azar M, et al. Improved agricultural water management in data-scarce semi-arid watersheds: Value of integrating remotely sensed leaf area index in hydrological modeling[J]. Science of the Total Environment, 2021, 791: 148177, doi: 10.1016/j.scitotenv.2021.148177.
[19] 赵文亮, 贺振, 贺俊平, 等. 基于MODIS-NDVI的河南省冬小麦产量遥感估测[J]. 地理研究, 2012, 31(12): 2310-2320.
[19] [Zhao Wenliang, He Zhen, He Junping, et al. Remote sensing estimation for winter wheat yield in Henan based on the MODIS-NDVI data[J]. Geographical Research, 2012, 31(12): 2310-2320. ]
[20] 王文静, 张霞, 赵银娣, 等. 综合多特征的Landsat 8时序遥感图像棉花分类方法[J]. 遥感学报, 2017, 21(1): 115-124.
[20] [Wang Wenjing, Zhang Xia, Zhao Yindi, et al. Cotton extraction method of integrated multi-features based on multi-temporal Landsat 8 images[J]. Journal of Remote Sensing, 2017, 21(1): 115-124. ]
[21] 田艳君, 石莹, 帅艳民, 等. 基于遥感时序特征的地表覆被信息提取[J]. 干旱区地理, 2021, 44(2): 450-459.
[21] [Tian Yanjun, Shi Ying, Shuai Yanmin, et al. Land cover information retrieval from temporal features based remote sensing images[J]. Arid Land Geography, 2021, 44(2): 450-459. ]
[22] 刘雅婷, 龚龑, 段博, 等. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测[J]. 武汉大学学报(信息科学版), 2020, 45(2): 265-272.
[22] [Liu Yating, Gong Yan, Duan Bo, et al. Combining multi-temporal NDVI and abundance from UAV remote sensing data for oilseed rape growth monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 265-272. ]
[23] 刘焕军, 孟令华, 张新乐, 等. 基于时间序列Landsat影像的棉花估产模型[J]. 农业工程学报, 2015, 31(17): 215-220.
[23] [Liu Huanjun, Meng Linghua, Zhang Xinle, et al. Estimation model of cotton yield with time series Landsat images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 215-220. ]
[24] 高中灵, 徐新刚, 王纪华, 等. 基于时间序列NDVI相似性分析的棉花估产[J]. 农业工程学报, 2012, 28(2): 148-153.
[24] [Gao Zhongling, Xu Xingang, Wang Jihua, et al. Cotton yield estimation based on similarity analysis of time-series NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2): 148-153. ]
[25] Meng H L, Liu H J, Zhang X L, et al. Assessment of the effectiveness of spatiotemporal fusion of multi-source satellite images for cotton yield estimation[J]. Computers and Electronics in Agriculture, 2019, 162: 44-52.
[26] 刘峻明, 周舟, 和晓彤, 等. 频率直方图与植被指数结合的冬小麦遥感产量估测[J]. 农业工程学报, 2021, 37(23): 145-152.
[26] [Liu Junming, Zhou Zhou, He Xiaotong, et al. Estimating winter wheat yield under frequency histogram and vegetation index using remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 145-152. ]
[27] Cai X L, Sharma B R. Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic River Basin[J]. Agricultural Water Management, 2010, 97(2): 309-316.
[28] Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[J]. Journal of Hydrology, 1998, 212-213: 198-212.
[29] Bastiaanssen W G M, Ahmad M D, Chemin Y. Satellite surveillance of evaporative depletion across the Indus Basin[J]. Water Resources Research, 2002, 38(12): 9-1-9-9.
[30] 黄青, 王利民, 滕飞. 利用MODIS-NDVI数据提取新疆棉花播种面积信息及长势监测方法研究[J]. 干旱地区农业研究, 2011, 29(2): 213-217.
[30] [Huang Qing, Wang Limin, Teng Fei. MODIS-NDVI-based monitoring of cotton planting areas and growth condition in Xinjiang[J]. Agricultural Research in the Arid Areas, 2011, 29(2): 213-217. ]
[31] 马春玥, 买买提·沙吾提, 姚杰, 等. 1950—2015年中国棉花生产时空动态变化[J]. 地理学报, 2020, 75(8): 1699-1710.
[31] [Ma Chunyue, Sawut Mamat, Yao Jie, et al. Spatio-temporal changes of cotton production in China from 1950 to 2015[J]. Acta Geographica Sinice, 2020, 75(8): 1699-1710. ]
[32] 杨欢, 邓帆, 张佳华, 等. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3): 208-215.
[32] [Yang Huan, Deng Fan, Zhang Jiahua, et al. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land and Resources, 2020, 32(3): 208-215. ]
[33] Xu C C, Zhang X C, Zhang J X, et al. Estimation of crop water requirement based on planting structure extraction from multi-temporal MODIS EVI[J]. Water Resources Management, 2021, 35: 2231-2247.
[34] 于兵. 作物水分生产率及种植适宜度的遥感评价方法[D]. 北京: 清华大学, 2019.
[34] [Yu Bing. Remote sensing based assessment method for crop water productivity and planting suitability[D]. Beijing: Tsinghua University, 2019. ]
文章导航

/