收稿日期: 2022-12-08
修回日期: 2023-03-11
网络出版日期: 2023-09-28
基金资助
甘肃省重点研发计划项目(22YF7NA038);农业部公益性行业(农业)科研专项(201503117);甘肃省青年科技基金计划(21JR7RA724)
Characteristics of agricultural carbon emissions in Gansu Province based on STIRPAT model
Received date: 2022-12-08
Revised date: 2023-03-11
Online published: 2023-09-28
从种植业和畜牧业两方面入手,采用排放因子法对甘肃省2000—2020年农业碳排放进行了估算,分析了其时空变化特征,基于STIRPAT(Stochastic impacts by regression on PAT)模型探析了甘肃省农业碳排放的影响因素,并提出了相应对策。结果表明:(1) 甘肃省2000—2020年CO2-e排放量呈“升高-降低-升高”的趋势,2015年达到峰值,估算为2320.41×104 t;从2018年开始又逐年增加,直至2020年增至2290.69×104 t。(2) 甘肃省农业CO2-e排放结构中,种植业占35%,畜牧业占65%。主要碳排放源中,畜禽胃肠道发酵对农业碳排放总量的贡献最大,其次是化肥和畜禽粪便管理。主要畜禽中,肉牛养殖对碳排放的贡献最大,其次是绵羊、山羊、奶牛和猪,家禽养殖的贡献最小。(3) 农村人口、农村居民人均GDP、农村居民人均可支配收入、农业机械总动力、农业增加值占全省生产总值比重、农村住户固定资产投资额、农业科技成果应用数量、农业科技投入是影响甘肃省农业碳排放的主要因素,影响力指数分别为-0.017、0.026、0.020、0.038、-0.025、0.031、-0.017、0.016。为有效控制农业碳排放,建议在5个方面采取相应策略:努力提高种植业资源利用效率和土壤碳汇能力;强化畜牧业源头减量、过程控制和末端处理;努力降低农业机械对石油的依赖;有效推动农村清洁能源利用;加大农业低碳技术的研发与应用。
杨思存 , 霍琳 , 王成宝 , 温美娟 . 基于STIRPAT模型的甘肃省农业碳排放特征分析[J]. 干旱区地理, 2023 , 46(9) : 1493 -1502 . DOI: 10.12118/j.issn.1000-6060.2022.649
This study aimed to investigate aspects of the plant production and animal husbandry by employing the emission factor method to estimate agricultural carbon emissions and analyze their temporal and spatial variation features in Gansu Province, China, from 2000 to 2020. The factors influencing agricultural carbon emissions were investigated based on the stochastic impacts by regression on PAT (STIRPAT) model. Subsequently, corresponding countermeasures were proposed in this study. The results indicated the following: (1) The CO2-e emissions from the agricultural sector of Gansu Province from 2000 to 2020 showed an increasing-decreasing-increasing trend; the emissions reached a peak in 2015, which was estimated to be 2320.41×104 t. Additionally, from 2018 onward, the emissions increased annually to 2290.69×104 t in 2020. (2) In Gansu Province’s agricultural CO2-e emission structure, the plant production accounted for 35% and animal husbandry accounted for 65% of the total emissions. Among the various carbon sources, livestock and poultry gastrointestinal fermentation contributed the most to total agricultural carbon emissions, followed by fertilizer and animal manure management. Among the major livestock and poultry, beef cattle farming contributed the most to agricultural carbon emissions. And then were sheep, goats, cows, and pigs farming, and poultry farming contributed the least to agricultural carbon emissions. (3) Rural population, per capita GDP, per capita disposable income of rural residents, total power of agricultural machinery, proportion of agricultural added value in the province’s GDP, investment in fixed assets of rural households, application of agricultural scientific and technological achievements, and investment in agricultural science and technology were the main factors affecting agricultural carbon emissions in Gansu Province. The influence indices of these factors for agricultural carbon emissions were -0.017, 0.026, 0.020, 0.038, -0.025, 0.031, -0.017, and 0.016, respectively. To effectively control agricultural carbon emissions, appropriate strategies regarding the following should be adopted: improving the resource utilization efficiency of the plant production and soil carbon sequestration capacity industriously; strengthening the source reduction, process control, and end treatment of animal husbandry; reducing the dependence of farm machinery on oil to the maximum possible extent; promoting the use of clean energy in rural areas effectively; and increasing the research, development, and application of low-carbon agricultural technologies.
[1] | 黄润秋. 把碳达峰碳中和纳入生态文明建设整体布局[N]. 学习时报, 2021-11-17(001). |
[1] | [Huang Runqiu. Promote the goal of carbon peak and carbon neutralization as scheduled[N]. Learning Times, 2021-11-17(001).] |
[2] | 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(001). |
[2] | [Xi Jinping. Speech on the 75th session of the United Nations general assembly[N]. People’s Daily, 2020-09-23(001).] |
[3] | 田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097-2105. |
[3] | [Tian Yun, Zhang Junbiao, Li Bo. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects[J]. Resources Science, 2012, 34(11): 2097-2105.] |
[4] | 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269-273. |
[4] | [Dong Hongmin, Li Yu’e, Tao Xiuping, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273.] |
[5] | 张小平, 王龙飞. 甘肃省农业碳排放变化及影响因素分析[J]. 干旱区地理, 2014, 37(5): 1029-1035. |
[5] | [Zhang Xiaoping, Wang Longfei. Variations and influential factors of agricultural carbon emissions in Gansu Province[J]. Arid Land Geography, 2014, 37(5): 1029-1035.] |
[6] | 邱子健, 靳红梅, 高南, 等. 江苏省农业碳排放时序特征与趋势预测[J]. 农业环境科学学报, 2022, 41(3): 658-669. |
[6] | [Qiu Zijian, Jin Hongmei, Gao Nan, et al. Temporal characteristics and trend prediction of agricultural carbon emission in Jiangsu Province, China[J]. Journal of Agro-Environment Science, 2022, 41(3): 658-669.] |
[7] | Havlik P, Valin H, Herrero M, et al. Climate change mitigation through livestock system transitions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(10): 3709-3714. |
[8] | Luo Y S, Long X L, Wu C, et al. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014[J]. Journal of Cleaner Production, 2017, 159: 220-228. |
[9] | Xiong C H, Chen S, Xu L T. Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China[J]. Growth and Change, 2020, 51(3): 1401-1416. |
[10] | Zhang J T, Tian H Q, Shi H, et al. Increased greenhouse gas emission intensity of major croplands in China: Implications for food security and climate change mitigation[J]. Global Change Biology, 2020, 26(11): 6116-6133. |
[11] | 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价——基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410. |
[11] | [Tian Chengshi, Chen Yu. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410.] |
[12] | 陈红, 王浩坤, 秦帅. 农业碳排放的脱钩效应及驱动因素分析——以黑龙江省为例[J]. 科技管理研究, 2019, 39(17): 247-252. |
[12] | [Chen Hong, Wang Haokun, Qin Shuai. Analysis of decoupling effect and driving factors of agricultural carbon emission: A case study of Heilongjiang Province[J]. Science and Technology Management Research, 2019, 39(17): 247-252.] |
[13] | 蔡育蓉, 王立刚. 北方典型农业生态系统的固碳减排路径及模式[J]. 中国生态农业学报, 2022, 30(4): 641-650. |
[13] | [Cai Yurong, Wang Ligang. Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in northern China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 641-650.] |
[14] | 夏文浩, 王铭扬, 姜磊. 新疆农业碳排放强度时空变化趋势与收敛分析[J]. 干旱区地理, 2023, 46(7): 1145-1154. |
[14] | [Xia Wenhao, Wang Mingyang, Jiang Lei. Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1145-1154.] |
[15] | 国家统计局农村社会经济调查司. 中国农村统计年鉴2021[M]. 北京: 中国统计出版社, 2021. |
[15] | Department of Rural Socio-Economic Survey, National Bureau of Statistics of China. China rural statistical yearbook 2021[M]. Beijing: China Statistics Press, 2021.] |
[16] | 刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014, 34(2): 248-258. |
[16] | [Liu Mingda, Meng Jijun, Liu Bihan. Research progress of carbon emission accounting methods at home and abroad[J]. Tropical Geography, 2014, 34(2): 248-258.] |
[17] | Aliyu G, Luo J, Di H, et al. Nitrous oxide emissions from China’s croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates[J]. Science of the Total Environment, 2019, 669: 547-558. |
[18] | Sook J E, Hak Y S, Back C S, et al. Application of 2006 IPCC guideline to improve greenhouse gas emission estimation for livestock agriculture[J]. Journal of Animal Environmental Science, 2012, 18(2): 75-84. |
[19] | Liu D, Xiao B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model[J]. Ecological Indicators, 2018, 93: 647-657. |
[20] | Ehrlich P R, Holdren J P. Impact of population growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive[J]. Science, 1971, 171(3977): 1212-1217. |
[21] | 张乐勤, 陈素平, 王文琴, 等. 安徽省近15年建设用地变化对碳排放效应测度及趋势预测——基于STIRPAT 模型[J]. 环境科学学报, 2013, 33(3): 950-958. |
[21] | [Zhang Leqin, Chen Suping, Wang Wenqin, et al. Measurement and trend analysis of carbon emissions from construction land changes in Anhui in the recent 15 years: Based on STIRPAT model[J]. Acta Scientiae Circumstantiae, 2013, 33(3): 950-958.] |
[22] | York R, Rosa E A, Dietz T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics, 2003, 46(3): 351-365. |
[23] | 黄晓慧, 杨飞. 碳达峰背景下中国农业碳排放测算及其时空动态演变[J]. 江苏农业科学, 2022, 50(14): 232-239. |
[23] | [Huang Xiaohui, Yang Fei. Calculation and spatiotemporal dynamic evolution of agricultural carbon emissions in China under the background of carbon peak[J]. Jiangsu Agricultural Sciences, 2022, 50(14): 232-239.] |
[24] | 胡婉玲, 张金鑫, 王红玲. 中国种植业碳排放时空分异研究[J]. 统计与决策, 2020, 36(15): 92-95. |
[24] | [Hu Wanling, Zhang Jinxin, Wang Hongling. Research on the spatial and temporal variation of carbon emissions of China’s planting industry[J]. Statistics and Decision, 2020, 36(15): 92-95.] |
[25] | 苏洋, 马惠兰, 李凤. 新疆农牧业碳排放及其与农业经济增长的脱钩关系研究[J]. 干旱区地理, 2014, 37(5): 1047-1054. |
[25] | [Su Yang, Ma Huilan, Li Feng. Xinjiang agriculture and animal husbandry carbon emissions and its decoupling relationship with agricultural economic growth[J]. Arid Land Geography, 2014, 37(5): 1047-1054.] |
[26] | 方苗, 贺义雄, 余晓洋. 农业碳排放研究: 空间格局、脱钩效应及驱动因素——以浙江省为例[J]. 资源开发与市场, 2022, 38(12): 1461-1467, 1528. |
[26] | [Fang Miao, He Yixiong, Yu Xiaoyang. Agricultural carbon emissions: Spatial pattern, decoupling effect and driving factors taking Zhejiang Province as an example[J]. Resource Development & Market, 2022, 38(12): 1461-1467, 1528.] |
[27] | 桂河, 李静, 尚梦媛. “双碳”背景下的宁夏农业碳排放时序特征、驱动机理与脱钩效应研究[J]. 中南林业科技大学学报(社会科学版), 2021, 15(6): 37-44. |
[27] | [Gui He, Li Jing, Shang Mengyuan. Study on temporal characteristics, driving mechanism and decoupling effect of agricultural carbon emission in Ningxia under the background of “double carbon”[J]. Journal of Central South University of Forestry & Technology (Social Sciences Edition), 2021, 15(6): 37-44.] |
/
〈 | 〉 |