气候与水文

西藏青稞主要种植区干旱时空分布及致灾危险性评估

  • 史继清 ,
  • 甘臣龙 ,
  • 周刊社 ,
  • 袁雷 ,
  • 张东东
展开
  • 1.西藏自治区气候中心,西藏 拉萨 850000
    2.墨竹工卡县气象局,西藏 拉萨 850000
史继清(1988-),女,硕士研究生,高级工程师,主要从事农业气象灾害、遥感方面研究. E-mail: 549923050@qq.com

收稿日期: 2022-10-17

  修回日期: 2022-12-05

  网络出版日期: 2023-08-03

基金资助

西藏自治区自然科学基金(XZ202001ZR0033G);西藏自治区科技重点研发计划(XZ202001ZY0023N);第二次青藏高原综合科学考察研究项目(2019QZKK0105);第二次青藏高原综合科学考察研究项目(2019QZKK0106)

Spatiotemporal distribution of drought and hazard assessment of highland barley in Tibet

  • Jiqing SHI ,
  • Chenlong GAN ,
  • Kanshe ZHOU ,
  • Lei YUAN ,
  • Dongdong ZHANG
Expand
  • 1. Tibet Climate Center, Lhasa 850000, Tibet, China
    2. Maizhokunggar Meteological Bureau, Lhasa 850000, Tibet, China

Received date: 2022-10-17

  Revised date: 2022-12-05

  Online published: 2023-08-03

摘要

西藏青稞主要种植区是西藏地区主要粮食作物的产区,在气候变化和人类活动加剧的背景下,该区的农业深受干旱影响。根据《气象干旱等级》(GB/T 20481-2017)国家标准,计算西藏青稞主要种植区25个气象站点全生育期的逐日气象干旱综合指数(MCI),统计1981—2020年各站点的气象干旱过程,并进一步分析了西藏青稞主要种植区各生育期气象干旱的时空变化特征及致灾危险性等级分布。结果表明:(1)近40 a来西藏青稞主要种植区呈现气温显著上升(P<0.01),降水不显著增多的特点;季节性的气温和降水变化趋势差异明显。(2)干旱覆盖范围和持续日数总体呈现不同程度的下降趋势,干旱强度(除播种-分蘖期外)均有所增强;分蘖-抽穗期干旱最严重,1981—1990年干旱最重,2001—2010年干旱最轻。(3)各生育期干旱发生频率的高值区主要集中在日喀则市东部、拉萨市南部、昌都市西南部和山南市中部地区,低值区位于林芝市中部。(4)经验正交函数法(EOF)分析的各生育期主要模态有中部与中西部相反、全区一致、西南与东北相反。(5)各生育期干旱致灾危险性等级总体呈现西高东低的分布特征,其中,分蘖-抽穗期致灾危险性总体较高,抽穗-成熟期次之,播种-分蘖期最低。

本文引用格式

史继清 , 甘臣龙 , 周刊社 , 袁雷 , 张东东 . 西藏青稞主要种植区干旱时空分布及致灾危险性评估[J]. 干旱区地理, 2023 , 46(7) : 1098 -1110 . DOI: 10.12118/j.issn.1000-6060.2022.535

Abstract

In Tibet, highland barley is mostly cultivated on the primary crop-producing area in Tibet, China. However, drought resulting from climate change and intense human activities agriculture is considerably affecting agriculture in this area. The daily meteorological drought comprehensive index (MCI) of the growth period of 25 meteorological stations in the main growing areas of highland barley in Tibet, was calculated according to the national standard of “Meteorological Drought Grade” (GB/T 20481-2017), and the spatial and temporal variation characteristics of meteorological drought and the distribution of disaster risk were analyzed in the main growing areas of highland barley in Tibet. The results revealed that: (1) In the last 40 years, the air temperature in the main growing areas of highland barley in Tibet increased significantly (P<0.01), whereas the precipitation did not increase significantly. The seasonal variation trend of temperature and precipitation differed considerably. (2) The coverage and duration of drought exhibited a decreasing trend of various degrees, and the drought intensity (except sowing-tillering stage) enhanced. Drought was the most severe at the tillering-heading stage and in 1981—1990, whereas drought was the least severe in 2001—2010. (3) The high-value areas of drought frequency in various growth stages were in eastern Xigaze, southern Lhasa, southwestern Qamdo, and central Shannan, whereas low-value areas were in central Nyingchi. (4) The patterns of empirical orthogonal function analysis in various growth stages were opposite in central and central-western regions and consistent in the whole region, and opposite in southwest and northeast regions. (5) The drought disaster risk grades of each growth period were higher in the west and lower in the east. The disaster risk grades of the tillering-heading stage were generally higher, that of the heading-maturity stage was lower, and that of the sowing-tillering stage was the lowest.

参考文献

[1] 姜大膀, 王晓欣. 对IPCC第六次评估报告中有关干旱变化的解读[J]. 大气科学学报, 2021, 44(5): 650-653.
[1] [Jiang Dabang, Wang Xiaoxin. A brief interpretation of drought change from IPCC Sixth Assessment Report[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 650-653.]
[2] 王晓利, 张春艳, 侯西勇. 1961—2017年环渤海地区气象干旱时空特征及致灾危险性评估[J]. 生态学报, 2019, 39(13): 4647-4659.
[2] [Wang Xiaoli, Zhang Chunyan, Hou Xiyong. Spatial-temporal characteristics and hazard risks of meteorological drought in Circum-Bohai-Sea region from 1961 to 2017[J]. Acta Ecologica Sinica, 2019, 39(13): 4647-4659.]
[3] Freitas A A, Drumond A, Carvalho V S B, et al. Drought assessment in S?o Francisco River Basin, Brazil: Characterization through SPI and associated anomalous climate patterns[J]. Atmosphere, 2022, 13(1): 41, doi: 10.3390/atmos13010041.
[4] Yang B, Kong L, Lai C G, et al. A framework on analyzing long-term drought changes and its influential factors based on the PDSI[J]. Atmosphere, 2022, 13(7): 1151, doi: 103390/atmos13071151.
[5] Suroso, Nadhilah D, Ardiansyah, et al. Drought detection in Java Island based on standardized precipitation and evapotranspiration index (SPEI)[J]. Journal of Water and Climate Change, 2021, 12(6): 2734-2752.
[6] 费龙, 邓国荣, 张洪岩, 等. 基于降水Z指数的朝鲜降水及旱涝时空特征[J]. 自然资源学报, 2020, 35(12): 3051-3063.
[6] [Fei Long, Deng Guorong, Zhang Hongyan, et al. Spatiotemporal patterns of precipitation and drought and flood using Z-index in Democratic People’s Republic of Korea[J]. Journal of Natural Resources, 2020, 35(12): 3051-3063.]
[7] 周丽, 谢舒蕾, 吴彬. 基于CI和强度分析方法的四川冬春季干旱事件变化特征[J]. 自然灾害学报, 2020, 29(3): 36-44.
[7] [Zhou Li, Xie Shulei, Wu Bin. Variation characteristics of the winter and spring drought events in Sichuan based on CI and intensity analysis[J]. Journal of Natural Disasters, 2020, 29(3): 36-44.]
[8] 曲学斌, 杨钦宇, 王慧清, 等. 基于MCI的内蒙古气象干旱强度特征分析[J]. 气象与环境科学, 2019, 42(4): 47-54.
[8] [Qu Xuebin, Yang Qinyu, Wang Huiqing, et al. Characteristics of meteorological drought intensity in Inner Mongolia based on MCI[J]. Meteorological and Environmental Sciences, 2019, 42(4): 47-54.]
[9] 熊俊楠, 刘志奇, 范春捆, 等. 1983—2013年西藏自治区气象灾害时空分布特征与变化趋势[J]. 冰川冻土, 2017, 39(6) : 1221-1231.
[9] [Xiong Junnan, Liu Zhiqi, Fan Chunkun, et al. Temporal and spatial distribution characteristics and changing trend of meteorologic disaster in Tibet Autonomous Region from 1983 through 2013[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1221-1231.]
[10] 史继清, 豆永丽, 杨霏云, 等. 西藏地区潜在蒸散量时空格局特征及影响因素研究[J]. 干旱区研究, 2021, 38(3): 724-732.
[10] [Shi Jiqing, Dou Yongli, Yang Feiyun, et al. Temporal and spatial pattern characteristics of potential evapotranspiration in Tibet and its influencing factors[J]. Arid Zone Research, 2021, 38(3): 724-732.]
[11] 史继清, 杨霏云, 边多, 等. 基于干旱灾害风险综合评估指数的西藏主要农区青稞干旱时空格局[J]. 中国农学通报, 2021, 37(2): 80-87.
[11] [Shi Jiqing, Yang Feiyun, Bian Duo, et al. Temporal and spatial patterns of barley in Tibet major agricultural areas based on the comprehensive assessment index of drought disaster risk[J]. Chinese Agricultural Science Bulletin, 2021, 37(2): 80-87.]
[12] 高佳佳, 徐薇, 边央, 等. 基于FAO Penman-Monteith方法的西藏春青稞干旱趋势研究[J]. 中国农学通报, 2021, 37(11): 79-86.
[12] [Gao Jiajia, Xu Wei, Bian Yang, et al. The drought tendency of spring highland barley on Tibet Plateau: A research via the FAO Penman-Monteith method[J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 79-86.]
[13] 宋善允, 王鹏祥. 西藏气候[M]. 北京: 气象出版社, 2013: 11-13, 385-387.
[13] [Song Shanyun, Wang Pengxiang. Tibet climate[M]. Beijing: China Meteorology Press, 2013: 11-13, 385-387.]
[14] 蒙强, 刘静霞, 李玉庆, 等. 土壤水分下限调控灌溉对春青稞生长、产量和水分利用的影响[J]. 干旱地区农业研究, 2020, 38(1): 173-182.
[14] [Meng Qiang, Liu Jingxia, Li Yuqing, et al. Effects of regulated irrigation of lower limits of soil moisture on growth, yield and water use efficiency of spring highland barley[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 173-182.]
[15] 时学双, 李法虎, 闫宝莹, 等. 不同生育期水分亏缺对春青稞水分利用和产量的影响[J]. 农业机械学报, 2015, 46(10): 144-151, 265.
[15] [Shi Xueshuang, Li Fahu, Yan Baoying, et al. Effects of water deficit at different growth stages on water use and yield of spring highland barley[J]. Journal of Agricultural Machinery, 2015, 46(10): 144-151, 265.]
[16] 郑盐源. 日土县气象灾害对青稞种植的影响及其防御对策[J]. 现代农业科技, 2017(23): 172-176.
[16] [Zheng Yanyuan. Effects of meteorological disasters on highland barley cultivation in Rutog County and its countermeasures[J]. Modern Agricultural Science and Technology, 2017(23): 172-176.]
[17] 邓国卫, 孙俊, 赖江, 等. 四川水稻不同生育期干旱与产量灰色关联分析[J]. 干旱气象, 2022, 40(5): 814-822.
[17] [Deng Guowei, Sun Jun, Lai Jiang, et al. Grey correlation analysis of drought and yield at different growth stages of rice in Sichuan Province[J]. Journal of Arid Meteorology, 2022, 40(5): 814-822.]
[18] 黄岩, 李晶, 王莹, 等. 不同生育期干旱对玉米生长及产量的影响模拟[J]. 农业灾害研究, 2019, 9(6): 47-49, 92.
[18] [Huang Yan, Li Jing, Wang Ying, et al. Impact simulation of drought on maize growth and yield in different growth stages[J]. Study on Agricultural Disaster, 2019, 9(6): 47-49, 92.]
[19] 曹永强, 王怡涵, 冯兴兴, 等. 河北省夏玉米不同生育期干旱时空分析[J]. 华北水利水电大学学报(自然科学版), 2020, 41(4): 1-9.
[19] [Cao Yongqiang, Wang Yihan, Feng Xingxing, et al. Spatio-temporal analysis of drought in different growth stages of summer maize in Hebei Province[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2020, 41(4): 1-9.]
[20] 吴乾慧. 1960—2015年北方冬麦区冬小麦生育期农业干旱演变特征及风险区划[D]. 兰州: 西北师范大学, 2018.
[20] [Wu Qianhui. Agricultural drought evolution and risk regionalization of winter wheat in north China during growth period from 1960 to 2015[D]. Lanzhou: Northwest Normal University, 2018.]
[21] 金建新, 张娜, 桂林国. 西藏地区干旱指标的时空演变[J]. 水土保持研究, 2019, 26(5): 377-380.
[21] [Jin Jianxin, Zhang Na, Gui Linguo. Temporal and spatial variations of the drought index to the Tibetan Plateau[J]. Research of Soil and Water Conservation, 2019, 26(5): 377-380.]
[22] 袁雷, 刘依兰, 马鹏飞. 基于标准化降水指数的1981—2013年西藏干旱时空特征分析[J]. 中国农学通报, 2015, 31(25): 228-234.
[22] [Yuan Lei, Liu Yilan, Ma Pengfei. Temporal and spatial patterns of drought based on standard precipitation index (SPI) in Tibet during 1981—2013[J]. Chinese Agricultural Science Bulletin, 2015, 31(25): 228-234.]
[23] 孙晓光, 王腾, 李白萍, 等. 基于标准化降水指数的西藏昌都市旱涝时空特征[J]. 中国农学通报, 2017, 33(8): 112-118.
[23] [Sun Xiaoguang, Wang Teng, Li Baiping, et al. Spatial and temporal characteristics of drought-flood in Chamdo based on standard precipitation index (SPI)[J]. Chinese Agricultural Science Bulletin, 2017, 33(8): 112-118.]
[24] 王圆圆, 扎西央宗. 利用条件植被指数评价西藏植被对气象干旱的响应[J]. 应用气象学报, 2016, 27(4): 435-444.
[24] [Wang Yuanyuan, Zhaxi Yangzong. Assessing vegetation response to meteorological drought in Tibet Autonomous Region using vegetation index[J]. Journal of Applied Meteorological Science, 2016, 27(4): 435-444.]
[25] 杜军, 袁雷, 周刊社, 等. 西藏自治区县级青稞种植气候适宜性区划[M]. 北京: 气象出版社, 2017.
[25] [Du Jun, Yuan Lei, Zhou Kanshe, et al. Climate suitability zoning for highland barley cultivation at County Tibet[M]. Beijing: China Meteorology Press, 2017.]
[26] 张强, 邹旭恺, 肖风劲, 等. 气象干旱等级[M]. 北京: 气象出版社, 2008: 33-53.
[26] [Zhang Qiang, Zou Xukai, Xiao Fengjin, et al. Meteorological drought grade[M]. Beijing: China Meteorology Press, 2008: 33-53.]
[27] Jung J. Spatial analysis of the vulnerability to meteorological hazards in Korea[J]. Journal of Climate Research, 2018, 13(3): 211-229.
[28] 史继清, 边多, 杨霏云, 等. 西藏地区潜在蒸散量变化特征及灰色模型预测初探[J]. 干旱区地理, 2021, 44(6): 1570-1579.
[28] [Shi Jiqing, Bian Duo, Yang Feiyun, et al. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet[J]. Arid Land Geography, 2021, 44(6): 1570-1579.]
[29] 赵峰, 毕硕本, 李兴宇, 等. 基于EOF和REOF的1470—1911年黄河中下游地区旱涝空间分布特征分析[J]. 干旱区地理, 2019, 42(4): 799-809.
[29] [Zhao Feng, Bi Shuoben, Li Xingyu, et al. Spatial characteristics of drought/flood disasters based on EOF and REOF in the middle and lower reaches of the Yellow River from 1470 to 1911[J]. Arid Land Geography, 2019, 42(4): 799-809.]
文章导航

/