生态与环境

国家重点生态功能区人类活动与生境质量时空变化特征及空间效应

  • 袁宏伟 ,
  • 蔡俊 ,
  • 章磊
展开
  • 安徽农业大学经济管理学院,安徽 合肥 230000
袁宏伟(1997-),男,硕士研究生,主要从事土地生态与可持续发展研究. E-mail: 1725649032@qq.com

收稿日期: 2022-05-20

  修回日期: 2022-08-04

  网络出版日期: 2023-07-24

基金资助

国家自然科学基金(71203054);安徽省教育厅科学研究项目(SK2019A0133)

Temporal and spatial changes of human activities and habitat quality in national key ecological function areas and their spatial effects

  • Hongwei YUAN ,
  • Jun CAI ,
  • Lei ZHANG
Expand
  • College of Economics & Management, Anhui Agricultural University, Hefei 230000, Anhui, China

Received date: 2022-05-20

  Revised date: 2022-08-04

  Online published: 2023-07-24

摘要

基于1995—2020年多源空间数据,通过InVEST模型与人类足迹指数法,探究国家重点生态功能区生境质量与人类活动时空分布特征,进一步采用双变量局部自相关与空间杜宾模型测度两者空间依赖性与空间效应。结果表明:(1) 25 a间研究区生境质量逐年下降,总体上呈“西部由南向北递减、东部交错分布”的格局。(2) 25 a间人类活动强度与广度均不断加深,高低值分布以“胡焕庸线”为界。(3) 人类活动与生境质量有明显的空间依赖性,LISA聚类图表明高-高、高-低、低-高集聚类型下生态区数量分别为15、5、5,无低-低集聚区。(4) 不同自然-社会背景下,典型人类活动对生境质量影响的空间效应方向不同,但都有显著的空间溢出效应。具体表现为:高-高集聚区内人口与GDP分布总效应为正,贡献度以人口分布为主;高-低集聚区内人口与GDP分布仍以正向的空间溢出效应为主,但GDP贡献最高;低-高集聚区人口分布影响效应为负,GDP仍是以高贡献的正向空间溢出效应为主;无论何种集聚区,交通道路都是以负向的空间溢出效应为主。较科学地评估了国家重点生态功能区生态环境与人类活动的发展现状,丰富了研究的方法与思路;数理分析基础上的相关性探讨,为研究区生态文明建设提供了政策依据。

本文引用格式

袁宏伟 , 蔡俊 , 章磊 . 国家重点生态功能区人类活动与生境质量时空变化特征及空间效应[J]. 干旱区地理, 2023 , 46(6) : 934 -948 . DOI: 10.12118/j.issn.1000-6060.2022.282

Abstract

Ecological civilization is a new concept of human civilization development. Scientific measurements of the correlation between human activities and habitat quality can provide theoretical support for the development of an ecological civilization. As a demonstration area for exploring the harmonious coexistence between humans and nature, national key ecological function zones play an important role in safeguarding the national ecological security pattern and coordinating the relationship between humans and the environment. Based on land use data and population, GDP, and traffic distribution data from 1995 to 2020, we used the InVEST model and the human footprint index method to explore the spatial and temporal distribution characteristics of habitat quality and human activities in national key ecological function zones. We used bivariate local autocorrelation and spatial Durbin model to measure their spatial dependence and effects. The results were as follows: (1) The habitat quality in the study area decreased yearly during the past 25 years, and generally showed a pattern of “decreasing from south to north in the west and staggered distribution in the east”. (2) The intensity and breadth of human activities increased during the past 25 years, and the distribution of high and low values was bound by the “Hu Line”. (3) There was a significant spatial dependence between human activities and habitat quality. The LISA cluster diagram showed that the number of ecological zones in high-high, high-low, and low-high cluster types was 15, 5, and 5, respectively, and there was no low-low cluster. (4) The spatial effects of typical human activities on habitat quality were different under different nature-social backgrounds, but they all had significant spatial spillover effects. Specifically, the total effect of population and GDP distribution in high-high agglomeration areas is positive, and population distribution is the main contributing factor. The spatial spillover effect of population and GDP in the high-low agglomeration area is still positive, but GDP has the highest contribution. The effect of population distribution in low-high agglomeration areas is negative, and GDP is still dominated by the positive spatial spillover effect of high contribution. No matter what kind of agglomeration area, traffic roads are dominated by a negative spatial spillover effect. The development status of the ecological environment and human activities in the national key ecological function areas is evaluated scientifically, the research methods and ideas are enriched, and the correlation discussion on the basis of mathematical analysis provides a policy basis for the construction of ecological civilizations in the study area.

参考文献

[1] 王黎明, 关庆锋, 冯仁国, 等. 全球变化视角下人地系统研究面临的几个问题探讨[J]. 地理科学, 2003, 23(4): 391-397.
[1] [Wang Liming, Guan Qingfeng, Feng Renguo, et al. Problems of man-land relationship system theory under global change[J]. Scientia Geographica Sinica, 2003, 23(4): 391-397.]
[2] 吴传钧. 论地理学的研究核心--人地关系地域系统[J]. 经济地理, 1991, 11(3): 1-6.
[2] [Wu Chuanjun. Man-earth areal system: The core of geographical study[J]. Economic Geography, 1991, 11(3): 1-6.]
[3] Turner B L I, Kasperson R E, Matson P A, et al. A framework for vulnerability analysis in sustainability science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8074-8079.
[4] Lyons K G, Brigham C A, Traut B H, et al. Rare species and ecosystem functioning[J]. Conservation Biology, 2005, 19(4): 1019-1024.
[5] Dorsaf Ki, Ke D, Ying Y, et al. Elevation trend in bacterial functional gene diversity decouples from taxonomic diversity[J]. Catena, 2021(199): 105099, doi: 10.1016/j.catena.2020.105099.
[6] Xu J, Lu X, Liu X. Patterns of species and functional diversity of macrofaunal assemblages and the bioassessment of benthic ecological quality status in the southern Yellow Sea[J]. Marine Pollution Bulletin, 2021(171): 112784, doi: 10.1016/j.marpolbul.2021.112784.
[7] Singer D, Seppey C V W, Lentendu G, et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems[J]. Environment International, 2021(146): 106262, doi: 10.1016/j.envint.2020.106262.
[8] Mengist W, Soromessa T, Feyisa G L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats[J]. Journal of Cleaner Production, 2021(329): 129778, doi: 10.1016/j.jclepro.2021.129778.
[9] Yohannes H, Soromessa T, Argaw M, et al. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile Basin of Ethiopian highlands[J]. Journal of Environmental Management, 2021(281): 111885, doi: 10.1016/j.jenvman.2020.111885.
[10] 刘彦随. 现代人地关系与人地系统科学[J]. 地理科学, 2020, 40(8): 1221-1234.
[10] [Liu Yansui. Modern human-earth relationship and human-earth system science[J]. Scientia Geographica Sinica, 2020, 40(8): 1221-1234.]
[11] 赵立君, 杨帆, 王楠, 等. 基于生态足迹模型的贵州省仁怀市可持续发展及其影响因素研究[J]. 生态与农村环境学报, 2021, 37(7): 870-876.
[11] [Zhao Lijun, Yang Fan, Wang Nan, et al. Research on sustainable development and its influencing factors of Renhuai City based on ecological footprint model[J]. Journal of Ecology and Rural Environment, 2021, 37(7): 870-876.]
[12] 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15): 5306-5317.
[12] [Liu Minxia, Pan Jinghu, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15): 5306-5317.]
[13] 孙丽蓉, 周冬梅, 岑国璋, 等. 基于地理探测器模型的疏勒河流域景观生态风险评价及驱动因素分析[J]. 干旱区地理, 2021, 44(5): 1384-1395.
[13] [Sun Lirong, Zhou Dongmei, Cen Guozhang, et al. Landscape ecological risk assessment and driving factors of the Shule River Basin based on the geographic detector model[J]. Arid Land Geography, 2021, 44(5): 1384-1395.]
[14] Sanderson E W, Jaiteh M, Levy M A, et al. The human footprint and the last of the wild: The human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not[J]. Bioscience, 2002, 52(10): 891-904.
[15] Martinuzzi S, Radeloff V C, Pastur G M, et al. Informing forest conservation planning with detailed human footprint data for Argentina[J]. Global Ecology and Conservation, 2021(31): e01787, doi: 10.1016/j.gecco.2021.e01787.
[16] Ayram C A C, Etter A, Díaz-Timoté J, et al. Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems[J]. Ecological Indicators, 2020(117): 106630, doi: 10.1016/j.ecolind.2020.106630.
[17] 周婷, 陈万旭, 李江风, 等. 神农架林区人类活动与生境质量的空间关系[J]. 生态学报, 2021, 41(15): 6134-6145.
[17] [Zhou Ting, Chen Wanxu, Li Jiangfeng, et al. Spatial relationship between human activities and habitat quality in Shennongjia Forest Region from 1995 to 2015[J]. Acta Ecologica Sinica, 2021, 41(15): 6134-6145.]
[18] He J, Huang J, Li C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model[J]. Ecological Modelling, 2017(366): 58-67.
[19] Mengist W, Soromessa T. Assessment of forest ecosystem service research trends and methodological approaches at global level: A meta-analysis[J]. Environmental Systems Research, 2019, 8(1): 1-18.
[20] 刘慧明, 高吉喜, 刘晓, 等. 国家重点生态功能区2010-2015年生态系统服务价值变化评估[J]. 生态学报, 2020, 40(6): 1865-1876.
[20] [Liu Huiming, Gao Jixi, Liu Xiao, et al. Monitoring and assessment of the ecosystem services value in the national key ecological function zones[J]. Acta Ecologica Sinica, 2020, 40(6): 1865-1876.]
[21] 丁斐, 庄贵阳. 国家重点生态功能区设立是否促进了经济发展[J]. 中国人口·资源与环境, 2021, 31(10): 19-28.
[21] [Ding Fei, Zhuang Guiyang. Has the establishment of national key ecological function areas promoted economic development[J]. China Population, Resources and Environment, 2021, 31(10): 19-28.]
[22] 郭婷, 王奕淇, 李国平. 基于能值生态足迹的国家重点生态功能区补偿标准研究[J]. 生态经济, 2021, 37(7): 154-160.
[22] [Guo Ting, Wang Yiqi, Li Guoping. Research on the compensation standard of national key ecological function areas based on the emergy ecological footprint[J]. Ecological Economy, 2021, 37(7): 154-160.]
[23] 栗忠飞, 刘海江. 2011和2019年生物多样性维护型国家重点生态功能区状态及变化评估[J]. 生态学报, 2021, 41(15): 5909-5918.
[23] [Li Zhongfei, Liu Haijiang. An assessment on the change of national key ecological functional zones of biodiversity maintenance in 2011 and 2019[J]. Acta Ecologica Sinica, 2021, 41(15): 5909-5918.]
[24] Kumari M, Sarma K, Sharma R. Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India[J]. Remote Sensing Applications: Society and Environment, 2019(15): 100239, doi: 10.1016/j.rsase.2019.100239.
[25] Tepanosyan G, Sahakyan L, Zhang C, et al. The application of local Moran’s I to identify spatial clusters and hot spots of Pb, Mo and Ti in urban soils of Yerevan[J]. Applied Geochemistry, 2019(104): 116-123.
[26] 尚俊, 蔡海生, 龙月, 等. 基于InVEST模型的鄱阳湖区生境质量时空演化及其变迁特征分析[J]. 长江流域资源与环境, 2021, 30(8): 1901-1915.
[26] [Shang Jun, Cai Haisheng, Long Yue, et al. Temporal-spatial distribution and transition of habitat quality in Poyang Lake region based on InVEST model[J]. Resources and Environment in the Yangtze Basin, 2021, 30(8): 1901-1915.]
[27] 黄木易, 岳文泽, 冯少茹, 等. 基于InVEST模型的皖西大别山区生境质量时空演化及景观格局分析[J]. 生态学报, 2020, 40(9): 2895-2906.
[27] [Huang Muyi, Yue Wenze, Feng Shaoru, et al. Spatial-temporal evolution of habitat quality and analysis of landscape patterns in Dabie Mountain area of west Anhui Province based on InVEST model[J]. Acta Ecologica Sinica, 2020, 40(9): 2895-2906.]
[28] 奥勇, 蒋嶺峰, 白召弟, 等. 基于格网GIS的黄河流域土地生态质量综合评价[J]. 干旱区地理, 2022, 45(1): 164-175.
[28] [Ao Yong, Jiang Lingfeng, Bai Zhaodi, et al. Comprehensive evaluation of land ecological quality in the Yellow River Basin based on Grid-GIS[J]. Arid Land Geography, 2022, 45(1): 164-175.]
[29] 段群滔, 罗立辉. 人类活动强度空间化方法综述与展望--以青藏高原为例[J]. 冰川冻土, 2021, 43(5): 1582-1593.
[29] [Duan Quntao, Luo Lihui. Summary and prospect of spatialization method of human activity intensity: Taking the Qinghai-Tibet Plateau as an example[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1582-1593.]
[30] Anselin L, Rey S J. Modern spatial econometrics in practice:A guide to GeoDa, GeoDaSpace and PySAL[M]. Chicago: GeoDa Press, 2014: 24-45.
[31] 谢余初, 巩杰, 张素欣, 等. 基于遥感和InVEST模型的白龙江流域景观生物多样性时空格局研究[J]. 地理科学, 2018, 38(6): 979-986.
[31] [Xie Yuchu, Gong Jie, Zhang Suxin, et al. Spatiotemporal change of landscape biodiversity based on InVEST model and remote sensing technology in the Bailong River watershed[J]. Scientia Geographica Sinica, 2018, 38(6): 979-986.]
[32] Bai Y, Wong C P, Jiang B, et al. Developing China’s ecological redline policy using ecosystem services assessments for land use planning[J]. Nature Communications, 2018(9): 3034, doi: 10.1038/s41467-018-05306-1.
[33] Elhorst J P. Matlab software for spatial panels[J]. International Regional Science Review, 2014, 37(3): 389-405.
[34] LeSage J, Pace R. Introduction to spatial econometrics[M]. Florida: CRC Press, 2009: 12-39.
[35] 徐国劲, 谢永生, 骆汉. 生态问题的经济社会根源与治理对策--以美国“黑风暴”事件为例[J]. 生态学报, 2019, 39(16): 5755-5765.
[35] [Xu Guojin, Xie Yongsheng, Luo Han. The economic and social origins of ecological problems and control countermeasures: Taking the American “Dust Bowl” incident as an example[J]. Acta Ecologica Sinica, 2019, 39(16): 5755-5765.]
文章导航

/