生物与土壤

河套平原土壤风蚀风险评估

  • 吴盈盈 ,
  • 王振亭
展开
  • 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
吴盈盈(1997-),女,硕士研究生,主要从事风沙物理与治沙工程研究. E-mail: wuyingying20@mails.ucas.ac.cn

收稿日期: 2022-06-30

  修回日期: 2022-08-09

  网络出版日期: 2023-03-31

基金资助

国家重点研发计划(2020YFA0608404);国家自然科学基金项目资助(41971011)

Risk assessment of soil wind erosion in Hetao Plain

  • Yingying WU ,
  • Zhenting WANG
Expand
  • 1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-06-30

  Revised date: 2022-08-09

  Online published: 2023-03-31

摘要

土壤风蚀是沙漠化的首要环节,评估其发生的可能性和潜在风险对区域风蚀防治具有重要意义。现有风险评估模型缺乏表征土壤可蚀性的力学参数。鉴于此,通过野外实测土壤硬度和抗剪强度,比较了河套平原不同土地利用类型的土壤可蚀性,采用抗剪强度、气候条件、地形地貌和植被特征等影响因子,建立了土壤风蚀风险评估模型。结果表明:(1) 沙地土壤硬度和抗剪强度的中值分别为2.05 kg·cm-2和10.00 kPa,远小于其他土地利用类型,土壤可蚀性极高。(2) 土壤风蚀风险具有明显的空间分异性,在空间上大致呈“西部、南缘高,中、东部较低”的特征,风蚀风险以轻险型和危险型为主,土壤可蚀性和植被盖度是影响土壤风蚀风险的重要因素。(3) 风蚀极险型和强险型约占研究区总面积的27.51%,主要分布在磴口县大部、黄河两岸、托克托县以及乌拉特前旗境内的乌梁素海东部,该区沙源物质丰富、风沙危害剧烈,是土壤风蚀的重点防护区域。

本文引用格式

吴盈盈 , 王振亭 . 河套平原土壤风蚀风险评估[J]. 干旱区地理, 2023 , 46(3) : 418 -427 . DOI: 10.12118/j.issn.1000-6060.2022.323

Abstract

Soil wind erosion is the primary stage and important component of desertification in arid and semiarid regions. Evaluating its possibility and potential risk for wind erosion control at the regional level is of considerable importance. In recent years, remote sensing and geographic information technology are often combined with mathematical methods to build a risk assessment model. However, the current risk models of wind erosion are still lacking in mechanical parameters. This study was conducted in the Hetao Plain of China, which is a typical region of wind erosion and desertification. Soil hardness and shear strength were measured in the field to determine the difference in soil erodibility among different land use types. Wind erosion risk was evaluated using fuzzy logic, analytic hierarchy process, and the weighted linear combination method based on the data of climate conditions, soil physical factors, topography, and vegetation characteristics. Then, the spatial distribution characteristics and causes of different risk areas were analyzed. The following results are presented. (1) The shear strength of land use types shows an increased tendency in the order of sandy land, grassland, woodland, cultivated land, and saline land, which agreed well with the soil hardness. The soil hardness and shear strength of sandy land are 2.05 kg·cm-2 and 10.00 kPa, respectively, which are significantly lower than those of other land use types, indicating that the soil erodibility of sandy land is extremely high. (2) The wind erosion risk varied in spatial distribution. Wind erosion hazard is high in the west and south and low in the eastern and middle regions. Moreover, 27.51% of the total areas are found to be at a high risk of erosion. Thus, soil erodibility and vegetation coverage are essential factors affecting soil wind erosion. (3) The severe risk region is mainly distributed in most of Dengkou County, the edge of the south bank of the Yellow River, Togtoh County, and the east of Wuliangsuhai in the Urad Front Banner. Therefore, this area should be the focus of wind erosion control. The current research demonstrates strong universality and compensates for the shortcomings of existing wind erosion models, which can provide a theoretical basis for regional-scale wind erosion assessment models.

参考文献

[1] 董光荣, 李长治, 金炯, 等. 关于土壤风蚀风洞模拟实验的某些结果[J]. 科学通报, 1987, 32(4): 297-301.
[1] [ Dong Guangrong, Li Changzhi, Jin Jiong, et al. Some results of wind tunnel simulation experiment on soil wind erosion[J]. Chinese Science Bulletin, 1987, 32(4): 297-301. ]
[2] 陈渭南, 董光荣, 董治宝. 中国北方土壤风蚀问题研究的进展与趋势[J]. 地球科学进展, 1994, 9(5): 6-12.
[2] [ Chen Weinan, Dong Guangrong, Dong Zhibao. Achievements and needs of studies on wind erosion in northern China[J]. Advances in Earth Science, 1994, 9(5): 6-12. ]
[3] 邹学勇, 张春来, 程宏, 等. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
[3] [ Zou Xueyong, Zhang Chunlai, Cheng Hong, et al. Classification and representation of factors affecting soil wind erosion in a model[J]. Advances in Earth Science, 2014, 29(8): 875-889. ]
[4] 南岭, 杜灵通, 展秀丽. 土壤风蚀可蚀性研究进展[J]. 土壤, 2014, 46(2): 204-211.
[4] [ Nan Ling, Du Lingtong, Zhan Xiuli. Advances in study on soil erodibility for wind erosion[J]. Soils, 2014, 46(2): 204-211. ]
[5] 李晓佳, 海春兴, 刘广通. 阴山北麓不同用地方式下春季土壤可蚀性研究[J]. 干旱区地理, 2007, 30(6): 926-932.
[5] [ Li Xiaojia, Hai Chunxing, Liu Guangtong. Spring soil erodibility for different land use patterns in the north piedmont of the Yinshan Mountains[J]. Arid Land Geography, 2007, 30(6): 926-932. ]
[6] 李驰, 黄浩, 孙兵兵, 等. 沙漠路基边坡抗风蚀能力现场试验研究[J]. 土木工程学报, 2011, 44(增刊2): 220-225.
[6] [ Li Chi, Huang Hao, Sun Bingbing, et al. Field test study on the anti-wind erosion ability for desert roadbed slopes[J]. China Civil Engineering Journal, 2011, 44(Suppl. 2): 220-225. ]
[7] 师华定, 高庆先, 庄大方, 等. 基于径向基函数神经网络(RBFN)的内蒙古土壤风蚀危险度评价[J]. 环境科学研究, 2008, 21(5): 129-133.
[7] [ Shi Huading, Gao Qingxian, Zhuang Dafang, et al. Using RBFN model and GIS technique to assess wind erosion hazard in Inner Mongolia[J]. Research of Environmental Sciences, 2008, 21(5): 129-133. ]
[8] 杨光华, 包安明, 陈曦, 等. 基于RBFN模型的新疆土壤风蚀危险度评价[J]. 中国沙漠, 2010, 30(5): 1137-1145.
[8] [ Yang Guanghua, Bao Anming, Chen Xi, et al. Wind erosion hazard assessment in Xinjiang based on RBFN model[J]. Journal of Desert Research, 2010, 30(5): 1137-1145. ]
[9] 刘新颜, 曹晓仪, 董治宝. 基于T-S模糊神经网络模型的榆林市土壤风蚀危险度评价[J]. 地理科学, 2013, 33(6): 741-747.
[9] [ Liu Xinyan, Cao Xiaoyi, Dong Zhibao. Soil wind erosion risk assessment in Yulin City using T-S fuzzy neural network model[J]. Scientia Geographica Sinica, 2013, 33(6): 741-747. ]
[10] 师华定, 高庆先, 齐永清, 等. 蒙古高原土壤风蚀危险度的FCM模糊聚类研究[J]. 自然资源学报, 2009, 24(5): 881-889.
[10] [ Shi Huading, Gao Qingxian, Qi Yongqing, et al. Wind erosion hazard assessment of Mongolian Plateau by using FMC fuzzy cluster method[J]. Journal of Natural Resources, 2009, 24(5): 881-889. ]
[11] 曹晓仪, 董治宝, 李静, 等. 基于GIS的榆林市土壤风蚀危险度评价[J]. 水土保持通报, 2013, 33(1): 206-210.
[11] [ Cao Xiaoyi, Dong Zhibao, Li Jing, et al. GIS-based evaluation of soil erosion risk by wind in Yulin City of Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2013, 33(1): 206-210. ]
[12] 孙传龙, 张卓栋, 邱倩倩. 基于层次分析法的锡林郭勒草地景观系统风蚀危险性分析[J]. 干旱区地理, 2016, 39(5): 1036-1042.
[12] [ Sun Chuanlong, Zhang Zhuodong, Qiu Qianqian. AHP based wind erosion risk analysis of the Xilinguole grassland landscape system[J]. Arid Land Geography, 2016, 39(5): 1036-1042. ]
[13] 杜鹤强, 薛娴, 王涛. 黄河上游宁夏-内蒙古段跃移沙粒起动风速的空间分布[J]. 农业工程学报, 2013, 29(14): 210-219.
[13] [ Du Heqiang, Xue Xian, Wang Tao. Spatial distribution of threshold wind velocity for sand saltation in Ningxia-Inner Mongolia reach of upstream of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 210-219. ]
[14] 邢丽珠, 张方敏, 邢开成, 等. 基于RWEQ模型的内蒙古巴彦淖尔市土壤风蚀变化特征及归因分析[J]. 中国沙漠, 2021, 41(5): 111-119.
[14] [ Xing Lizhu, Zhang Fangmin, Xing Kaicheng, et al. Change of soil wind erosion and attribution in Bayannur, Inner Mongolia based on the revised wind erosion equation[J]. Journal of Desert Research, 2021, 41(5): 111-119. ]
[15] 张正偲, 董治宝, 赵爱国, 等. 输沙量与输沙势的关系[J]. 中国沙漠, 2011, 31(4): 824-827.
[15] [ Zhang Zhengcai, Dong Zhibao, Zhao Aiguo, et al. Relationship between sand transport and sand drift potential[J]. Journal of Desert Research, 2011, 31(4): 824-827. ]
[16] 陈首序, 董玉祥. 风蚀气候侵蚀力研究进展[J]. 中国沙漠, 2020, 40(5): 65-73.
[16] [ Chen Shouxu, Dong Yuxiang. A review of the research on wind erosion climatic erosivity[J]. Journal of Desert Research, 2020, 40(5): 65-73. ]
[17] 王永, 赵举, 程玉臣. 阴山北麓农牧交错带风蚀气候侵蚀力的计算与分析[J]. 华北农学报, 2005, 20(增刊1): 57-60.
[17] [ Wang Yong, Zhao Ju, Cheng Yuchen. Analysis of wind erosion climatic erosivity at agri-pasture transition zone in north area of Yinshan Mountain[J]. Acta Agriculturae Boreali-Sinica, 2005, 20(Suppl. 1): 57-60. ]
[18] 刘慧, 李晓英, 肖建华, 等. 1961—2015年雅鲁藏布江流域风蚀气候侵蚀力变化[J]. 地理科学, 2019, 39(4): 688-695.
[18] [ Liu Hui, Li Xiaoying, Xiao Jianhua, et al. Variations of wind erosion climatic erosivity in the Yarlung Zangbo River Basin during 1961—2015[J]. Scientia Geographica Sinica, 2019, 39(4): 688-695. ]
[19] 王翔宇, 原鹏飞, 丁国栋, 等. 不同植被覆盖防治土壤风蚀对比研究[J]. 水土保持研究, 2008, 15(5): 38-41.
[19] [ Wang Xiangyu, Yuan Pengfei, Ding Guodong, et al. Study on mechanism between natural shrub-grass and soil wind erosion[J]. Research of Soil and Water Conservation, 2008, 15(5): 38-41. ]
[20] 杨文斌, 李卫, 党宏忠, 等. 低覆盖度治沙——原理、模式与效果[M]. 北京: 科学出版社, 2016.
[20] [ Yang Wenbin, Li Wei, Dang Hongzhong, et al. Desertification control with low coverage vegetation: Principle, mode and effect[M]. Beijing: Science Press, 2016. ]
[21] 胡孟春, 刘玉章, 乌兰, 等. 科尔沁沙地土壤风蚀的风洞实验研究[J]. 中国沙漠, 1991, 11(1): 25-32.
[21] [ Hu Mengchun, Liu Yuzhang, Wu Lan, et al. A experimental study in wind tunnel on wind erosion of soil in Korqin Sandy Land[J]. Journal of Desert Research, 1991, 11(1): 25-32. ]
[22] 杨望, 张硕, 杨坚, 等. 收获期木薯地耕作层土壤硬度的试验研究[J]. 农机化研究, 2015, 37(7): 176-180.
[22] [ Yang Wang, Zhang Shuo, Yang Jian, et al. Experimental study on soil hardness of cultivated horizon at cassava cultivated farm in harvesting period[J]. Journal of Agricultural Mechanization Research, 2015, 37(7): 176-180. ]
[23] Fallahzade J, Karimi A, Naderi M, et al. Soil mechanical properties and wind erosion following conversion of desert to irrigated croplands in central Iran[J]. Soil and Tillage Research, 2020, 204: 104665, doi: 10.1016/j.still.2020.104665.
[24] Zhang C, Wang X, Zou X, et al. Estimation of surface shear strength of undisturbed soils in the eastern part of northern China’s wind erosion area[J]. Soil and Tillage Research, 2018, 178: 1-10.
[25] Wang Z T, Wang H T, Niu Q H, et al. Abrasion of yardangs[J]. Physical Review E, 2011, 84(3): 031304, doi: 10.1103/PhysRevE.84.031304.
[26] Wang Z T. Erosion model for brittle materials under low-speed impacts[J]. Journal of Tribology, 2020, 142(7): 074501, doi: 10.1115/1.4046019.
[27] 吴盈盈, 刘旭阳, 王振亭. 干燥致密土壤在沙粒流冲击下的磨蚀规律[J]. 农业工程学报, 2022, 38(8): 315-320.
[27] [ Wu Yingying, Liu Xuyang, Wang Zhenting. Abrasion law of dry and dense soil under the bombardment of sand grain flows[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 315-320. ]
[28] 李振山. 地形起伏对气流速度影响的风洞实验研究[J]. 水土保持研究, 1999, 6(4): 75-79.
[28] [ Li Zhenshan. Wind tunnel simulation of flow velocity on the windward slope[J]. Research of Soil and Water Conservation, 1999, 6(4): 75-79. ]
[29] Mirmousavi S H. Regional modeling of wind erosion in the north west and south west of Iran[J]. Eurasian Soil Science, 2016, 49(8): 942-953.
[30] Baumgertel A, Luki? S, Belanovi? Simi? S, et al. Identifying areas sensitive to wind erosion: A case study of the AP Vojvodina (Serbia)[J]. Applied Sciences, 2019, 9(23): 5106, doi: 10.3390/app9235106.
[31] Mez?si G, Blanka V, Bata T, et al. Assessment of future scenarios for wind erosion sensitivity changes based on ALADIN and REMO regional climate model simulation data[J]. Open Geosciences, 2016, 8(1): 465-477.
[32] Borrelli P, Panagos P, Ballabio C, et al. Towards a pan-European assessment of land susceptibility to wind erosion[J]. Land Degradation & Development, 2016, 27(4): 1093-1105.
[33] 于国茂, 刘越, 艳燕, 等. 2000—2008年内蒙古中部地区土壤风蚀危险度评价[J]. 地理科学, 2011, 31(12): 1493-1499.
[33] [ Yu Guo-mao, Liu Yue, Yan Yan, et al. Soil wind erosion risk assessment in the middle part of Inner Mongolia Plateau during 2000 to 2008[J]. Scientia Geographica Sinica, 2011, 31(12): 1493-1499. ]
[34] 胡孟春, 王周龙. 土壤风蚀的自然-社会复合系统动态过程模拟研究[J]. 科学通报, 1994, 39(12): 1118-1121.
[34] [ Hu Mengchun, Wang Zhoulong. Study on dynamic process simulation of natural and social complex system of soil wind erosion[J]. Chinese Science Bulletin, 1994, 39(12): 1118-1121. ]
[35] 周颖, 曹月娥, 杨建军, 等. 准噶尔盆地东部土壤风蚀危险度评价[J]. 中国沙漠, 2016, 36(5): 1265-1270.
[35] [ Zhou Ying, Cao Yue’e, Yang Jianjun, et al. Assessment of wind erosion hazard degree in the Zhundong area, Xinjiang, China[J]. Journal of Desert Research, 2016, 36(5): 1265-1270. ]
[36] Mihi A, Benaradj A. Assessing and mapping wind erosion-prone areas in northeastern Algeria using additive linear model, fuzzy logic, multicriteria, GIS, and remote sensing[J]. Environmental Earth Sciences, 2022, 81(2): 1-21.
[37] Khaboushan E A, Emami H, Mosaddeghi M R, et al. Estimation of unsaturated shear strength parameters using easily-available soil properties[J]. Soil and Tillage Research, 2018, 184: 118-127.
[38] Feng B, Zong Q, Cai H, et al. Calculation of increased soil shear strength from desert plant roots[J]. Arabian Journal of Geosciences, 2019, 12(16): 1-12.
[39] Zhang B, Zhao Q G, Horn R, et al. Shear strength of surface soil as affected by soil bulk density and soil water content[J]. Soil and Tillage Research, 2001, 59(3-4): 97-106.
[40] 张扬, 田美荣, 陈艳梅, 等. 基于RWEQ模型的磴口县沙地与耕地风蚀评价及验证[J]. 干旱区资源与环境, 2021, 35(9): 95-102.
[40] [ Zhang Yang, Tian Meirong, Chen Yanmei, et al. Evaluation and verification of wind erosion of sandy land and cultivated land in Dengkou County based on RWEQ model[J]. Journal of Arid Land Resources and Environment, 2021, 35(9): 95-102. ]
文章导航

/