区域发展

新冠疫情影响下宁夏旅游流网络结构演化研究

  • 任浩科 ,
  • 魏伟 ,
  • 汪克会
展开
  • 1.郑州大学管理学院,河南 郑州 450001
    2.郑州大学能源-环境-经济研究中心,河南 郑州 450001
    3.宁夏大学文化旅游学院,宁夏 中卫 755000
任浩科(1996-),男,硕士研究生,主要从事旅游经济与文化研究. E-mail: m18809634713@163.com

收稿日期: 2022-05-01

  修回日期: 2022-05-24

  网络出版日期: 2023-03-14

基金资助

国家自然科学基金青年科学基金项目(72001191);河南省自然科学基金青年科学基金项目(202300410442);河南省哲学社会科学规划青年项目(2020CZH009)

Structural evolution of tourism flow network in Ningxia under the influence of COVID-19

  • Haoke REN ,
  • Wei WEI ,
  • Kehui WANG
Expand
  • 1. School of Management, Zhengzhou University, Zhengzhou 450001, Henan, China
    2. Energy-Environment-Economics Research Center, Zhengzhou University, Zhengzhou 450001, Henan, China
    3. School of Culture and Tourism, Ningxia University, Zhongwei 755000, Ningxia, China

Received date: 2022-05-01

  Revised date: 2022-05-24

  Online published: 2023-03-14

摘要

探究新冠疫情影响下的旅游流网络结构演化特征有助于发现旅游新线路,识别旅游市场新需求。基于网络游记,从新冠疫情对旅游流的影响视角,采用社会网络分析方法对新冠疫情前后宁夏旅游流网络结构演化进行研究。结果表明:新冠疫情后新的旅游节点与线路促使宁夏旅游流网络节点分布不均衡状况有所改善;新冠疫情增加了旅游者从边缘区旅游节点到其他边缘区旅游节点的可能性,改变了边缘区内旅游流网络节点的聚集和扩散效应;新冠疫情使宗教场所及演艺类核心旅游节点在网络结构中的位置发生了巨大改变,甚至在整个旅游流网络结构中消失,但绝大部分核心旅游节点在新冠疫情前后都展现出了强大的竞争优势。

本文引用格式

任浩科 , 魏伟 , 汪克会 . 新冠疫情影响下宁夏旅游流网络结构演化研究[J]. 干旱区地理, 2023 , 46(2) : 316 -324 . DOI: 10.12118/j.issn.1000-6060.2022.188

Abstract

Exploring the structural evolution characteristics of tourism flow networks under the influence of COVID-19 is helpful in discovering new tourism routes and identifying new requirements of the tourism market. On the basis of network travel notes, from the perspective of the COVID-19 effect on tourism flow, a social network analysis method was used to examine the evolution of the tourism flow network structure in Ningxia Hui Autonomous Region, China before and after the onset of COVID-19. The following results are obtained: After COVID-19, new tourism nodes and routes have improved the unbalanced distribution of the tourism flow network nodes in Ningxia; COVID-19 has increased the possibility of tourists from marginal tourism nodes to other tourism nodes, and changed the aggregation and diffusion effect of tourism flow network nodes in marginal areas; COVID-19 has greatly changed the location of religious places and core performing arts tourism nodes in the network structure, and even disappeared from the entire tourism flow network structure. However, most of the core tourism nodes exhibit strong competitive advantage before and after the onset of COVID-19.

参考文献

[1] 孙根年, 甘晓蕊. 后疫情时代中国典型省区旅游业恢复及预测——以琼、鄂、沪、京四地交通客运月数据为例[J]. 陕西师范大学学报(自然科学版), 2021, 49(6): 9-20.
[1] [Sun Gennian, Gan Xiao-rui. Recovery and forecast of tourism in typical provinces of China in the post-epidemic era: Taking the monthly traffic volume data of Hainan, Hubei, Shanghai and Beijing as an example[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2021, 49(6): 9-20.]
[2] 冯晓华, 黄震方. 疫情常态化防控下游客旅游行为意向研究[J]. 干旱区资源与环境, 2021, 35(4): 203-208.
[2] [Feng Xiaohua, Huang Zhenfang. Research on tourism behavior intention of tourists under the normal epidemic prevention and control[J]. Journal of Arid Land Resources and Environment, 2021, 35(4): 203-208.]
[3] 田里, 马玉. 常态化防控下的旅游业发展挑战与机遇[J]. 社会科学家, 2021(12): 60-64.
[3] [Tian Li, Ma Yu. Tourism development challenges and opportunities under normalized prevention and control[J]. Social Scientist, 2021(12): 60-64.]
[4] 王淑华, 董引引. 基于旅游数字足迹的河南省旅游流网络结构特征研究[J]. 西北师范大学学报(自然科学版), 2021, 57(3): 96-103.
[4] [Wang Shuhua, Dong Yinyin. The structural characteristics of tourism flow network in Henan Province based on tourism digital footprint[J]. Journal of Northwest Normal University (Natural Science Edition), 2021, 57(3): 96-103.]
[5] 闫闪闪, 靳诚. 基于多源数据的市域旅游流空间网络结构特征——以洛阳市为例[J]. 经济地理, 2019, 39(8): 231-240.
[5] [Yan Shanshan, Jin Cheng. Spatial network structure of the city-level tourist flow based on multisource data: A case study of Luoyang[J]. Economic Geography, 2019, 39(8): 231-240.]
[6] 赵明煜, 刘建国. 北京市旅游流网络特征及影响研究[J]. 城市发展研究, 2020, 27(9): 13-18.
[6] [Zhao Mingyu, Liu Jianguo. Research on the characteristics and influence of Beijing tourism flow network[J]. Urban Development Studies, 2020, 27(9): 13-18.]
[7] 闫闪闪, 梁留科, 索志辉, 等. 基于大数据的洛阳市旅游流时空分布特征[J]. 经济地理, 2017, 37(8): 216-224.
[7] [Yan Shanshan, Liang Liuke, Suo Zhihui, et al. Big data based spatiotemoral distribution characters of tourism flow in Luoyang[J]. Economic Geography, 2017, 37(8): 216-224.]
[8] 蒋依依, 刘焱序, 王宁, 等. 2004—2019年全球旅游流网络中心度时空演变[J]. 地理研究, 2022, 41(3): 698-712.
[8] [Jiang Yiyi, Liu Yanxu, Wang Ning, et al. The spatial dynamics of global inbound tourism network centrality during 2004—2019[J]. Geographical Research, 2022, 41(3): 698-712.]
[9] 侯贺平, 王靓, 任婉倩, 等. 基于数字足迹的河南省A级景区旅游流网络特征研究[J]. 地域研究与开发, 2022, 41(1): 91-97.
[9] [Hou Heping, Wang Liang, Ren Wanqian, et al. Research on characteristics of tourism flow networks of A-level scenic spots in Henan Province based on digital footprint[J]. Areal Research and Development, 2022, 41(1): 91-97.]
[10] 王娟, 孟凤娇, 封洁洁. 基于用户生成内容的成渝城市群旅游客流网络结构演化及机理研究[J]. 地域研究与开发, 2022, 41(1): 85-90.
[10] [Wang Juan, Meng Fengjiao, Feng Jiejie. User generated content based tourist flow network structure evolution and mechanism in Chengdu-Chongqing urban agglomeration[J]. Areal Research and Development, 2022, 41(1): 85-90.]
[11] Balli F, Balli H O, Cebeci K. Impacts of exported Turkish soap operas and visa-free entry on inbound tourism to Turkey[J]. Tourism Management, 2013, 37(3): 186-192.
[12] Bendle L J. The structures and flows of a large tourist itinerancy network[J]. Current Issues in Tourism, 2018, 21(1): 103-122.
[13] Hwang Y H, Gretzel U, Fesenmaier D R. Multicity trip patterns[J]. Annals of Tourism Research, 2006, 33(4): 1057-1078.
[14] 魏卫, 许欣, 王晓宇. “一带一路”入境旅游时空格局与影响因素[J]. 华侨大学学报(哲学社科学版), 2021(2): 65-75.
[14] [Wei Wei, Xu Xin, Wang Xiaoyu. The time and space patterns and influencing factors of inbound tourism under the “One Belt One Road”[J]. Journal of Huaqiao University (Philosophy & Social Sciences Edition), 2021(2): 65-75.]
[15] 付琼鸽, 刘大均, 胡静, 等. 湖北省旅游流网络结构的特征与优化[J]. 经济地理, 2015, 35(3): 191-196.
[15] [Fu Qiongge, Liu Dajun, Hu Jing, et al. Network structure and optimization research on the Hubei Province tourist flow[J]. Economic Geography, 2015, 35(3): 191-196.]
[16] 程雪兰, 方叶林, 苏雪晴, 等. 中国东部沿海5大城市群旅游流网络结构空间分布特征研究[J]. 地理科学进展, 2021, 40(6): 948-957.
[16] [Cheng Xuelan, Fang Yelin, Su Xueqing, et al. Spatial distribution characteristics of network structure of tourism flow in five major urban agglomerations of coastal China[J]. Progress in Geography, 2021, 40(6): 948-957.]
[17] 朱安妮. 新冠肺炎疫情对湖南省生态旅游流的影响研究[D]. 长沙: 中南林业科技大学, 2021.
[17] [Zhu Anni. Impact of COVID-19 on Hunan’s ecotourism flow[D]. Changsha: Central South University of Forestory and Technology, 2021.]
[18] 赵磊. 疫情影响下的武陵山片区旅游流网络空间结构特征[D]. 长沙: 湖南师范大学, 2021.
[18] [Zhao Lei. Spatial structure of tourism flow network in Wuling Mountain under the influence of epidemic[D]. Changsha: Hunan Normal University, 2021.]
[19] 韩冬, 黄丽华. 基于旅游数字足迹的旅游流网络结构研究——以内蒙古自治区为例[J]. 干旱区资源与环境, 2018, 32(3): 192-197.
[19] [Han Dong, Huang Lihua. Study on the structure of tourism flow based on tourism digital footprints: A case Inner Mongolia Autonomous Region[J]. Journal of Arid Land Resources and Environment, 2018, 32(3): 192-197.]
[20] 许丽君, 汪建敏. 全域旅游视角下宁夏旅游带动战略研究[J]. 宁夏社会科学, 2017(6): 91-95.
[20] [Xu Lijun, Wang Jianmin. Research on Ningxia tourism driving strategy from the view of comprehensive tourism[J]. Social Sciences in Ningxia, 2017(6): 91-95.]
[21] 宋小龙, 米文宝, 李陇堂, 等. 宁夏旅游经济与生态环境系统空间错位研究[J]. 干旱区地理, 2022, 45(2): 593-605.
[21] [Song Xiaolong, Mi Wenbao, Li Longtang, et al. Spatial mismatch of tourism economy and ecological environment system in Ningxia[J]. Arid Land Geography, 2022, 45(2): 593-605.]
[22] 张学艳, 周小虎, 王侨. 基于社会网络分析的独角兽企业关系网络研究[J]. 领导科学, 2021(24): 64-68.
[22] [Zhang Xueyan, Zhou Xiaohu, Wang Qiao. Research on the unicorn enterprise relations network based on social network analysis[J]. Leadership Science, 2021(24): 64-68.]
[23] 郭雪松, 赵慧增. 突发公共卫生事件应急预案的组织间网络结构研究[J]. 暨南学报(哲学社会科学版), 2021, 43(1): 64-79.
[23] [Guo Xuesong, Zhao Huizeng. Interorganizational network structure of public health emergency plan[J]. Jinan Journal (Philosophy & Social Sciences Edition), 2021, 43(1): 64-79.]
[24] 张妍妍, 李君轶, 杨敏. 基于旅游数字足迹的西安旅游流网络结构研究[J]. 人文地理, 2014, 29(4): 111-118.
[24] [Zhang Yanyan, Li Junyi, Yang Min. The tourism flow network structure of Xi’an based on tourism digital footprint[J]. Human Geography, 2014, 29(4): 111-118.]
[25] 周李, 吴殿廷, 虞虎, 等. 基于网络游记的城市旅游流网络结构演化研究——以北京市为例[J]. 地理科学, 2020, 40(2): 298-307.
[25] [Zhou Li, Wu Dianting, Yu Hu, et al. Evolution of urban tourism flow network structure based on network travel notes: A case study of Beijing City[J]. Scientia Geographica Sinica, 2020, 40(2): 298-307.]
[26] 王朝辉, 汤陈松, 乔浩浩, 等. 基于数字足迹的乡村旅游流空间结构特征——以浙江省湖州市为例[J]. 经济地理, 2020, 40(3): 225-233.
[26] [Wang Chaohui, Tang Chensong, Qiao Haohao, et al. Spatial structure characteristics of rural tourism flow based on digital footprint: Taking Huzhou City in Zhejiang Province for example[J]. Economic Geography, 2020, 40(3): 225-233.]
文章导航

/