气候与水文

太阳辐射短时临近预报R模型的构建及验证

  • 姚德贵 ,
  • 刘唯佳 ,
  • 韩永翔 ,
  • 李哲 ,
  • 梁允
展开
  • 1.国网河南省电力公司电力科学研究院,河南 郑州 450000
    2.杭州市气象局,浙江 杭州 310051
    3.南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044
姚德贵(1971-),男,博士,教授级高级工程师,主要从事电力气象研究. E-mail: 16492187@qq.com

收稿日期: 2022-06-01

  修回日期: 2022-07-17

  网络出版日期: 2023-02-21

基金资助

国家自然基金面上项目(41875176)

Construction and validation of the R models for short-term solar irradiance forecasting

  • Degui YAO ,
  • Weijia LIU ,
  • Yongxiang HAN ,
  • Zhe LI ,
  • Yun LIANG
Expand
  • 1. Electric Power Research Institute, Electric Power of Henan, Zhengzhou 450000, Henan, China
    2. Hangzhou Meteorological Bureau, Hangzhou 310051, Zhejiang, China
    3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2022-06-01

  Revised date: 2022-07-17

  Online published: 2023-02-21

摘要

提高太阳辐射短时临近预报(<6 h)的准确率是确保电网调度的重要举措,也是极具挑战性的技术瓶颈之一。基于云-辐射关系,利用地面观测的太阳辐照度反演的云相对辐射强迫比值,构建了太阳辐射短时临近预报模型(R模型),并用美国南部大平原中心站16 a的辐照度观测数据,对R模型的预报性能进行了评估。结果表明:(1) 有云存在的个例中,R模型较传统的简单持续性模型(Simple模型)的预报性能有很大提升,相比于预报性能较高的智能持续性模型(Smart模型或RCRF模型)仍有2%~25%的改进。(2) 在16 a包含2.9×105个8类云状个例的总体检验中,当预报时效超过1 h时,R模型的预报性能显著优于Simple模型和RCRF模型。相对于RCRF模型,R模型在6 h预报时效下,对总辐射和直接辐射的预报性能可分别提高25%和19%,预报时效分别延长了1.5 h和1 h。(3) R模型为太阳辐射短时临近预报提供了准确率更高的基准模型。同时,该模型可仅依靠地面短期的辐照度观测资料即可预报,为缺少同期气象要素观测的光伏电厂的辐射预报提供了新的途径或新的可能。

本文引用格式

姚德贵 , 刘唯佳 , 韩永翔 , 李哲 , 梁允 . 太阳辐射短时临近预报R模型的构建及验证[J]. 干旱区地理, 2023 , 46(1) : 47 -55 . DOI: 10.12118/j.issn.1000-6060.2022.259

Abstract

Improving the forecasting accuracy of solar irradiance, as an important safeguard ensuring the stability of grid operations, remains one of the challenging technical bottlenecks. This study constructs a short-time solar irradiance forecasting model (R model) based on the cloud relative radiative forcing ratio R derived by the ground-based solar irradiances from the relationship between clouds and radiation and then evaluates the forecasting accuracy of the R model using 16-year solar irradiance measurements at the Southern Great Plains Central Facility site in the United States. The results show that (1) the R model significantly outperforms the simple persistence model and exhibits a 2%-25% improvement relative to the advanced smart persistence model (also called cloud relative radiative forcing (RCRF) model herein) in the cloudy case. (2) For the overall validation with 2.9×105 individual cloudy cases in 8 categories over 16 years, the forecast accuracy of the R model is significantly better than that of the simple model and the RCRF model at lead times longer than 1 h. Compared with the RCRF model, the forecast performance of the R model is improved by 25% and 19% in global horizontal irradiance and direct normal irradiance, respectively, and the lead time is extended by 1.5 and 1 h. (3) The R model with higher forecast performance sets a higher standard for the benchmark model of short-term solar irradiance forecasting. Meanwhile, the R model only requires short-term ground-based radiation observations for forecasting, facilitating and providing new possibilities for photovoltaic power plants without concurrent meteorological measurements in short-term solar irradiance forecasting.

参考文献

[1] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
[1] [Hu Angang. China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15.]
[2] 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2): 411-420.
[2] [Zou Caineng, Xiong Bo, Xue Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411-420.]
[3] 崔容强. 太阳能光伏发电——中国低碳经济的希望[J]. 自然杂志, 2010, 32(3): 149-154.
[3] [Cui Rongqiang. Solar photovoltaic power: Hope of low-carbon economy in China[J]. Chinese Journal of Nature, 2010, 32(3): 149-154.]
[4] 刘佳, 何清, 刘蕊, 等. 新疆太阳辐射特征及其太阳能资源状况[J]. 干旱气象, 2008, 26(4): 61-66.
[4] [Liu Jia, He Qing, Liu Rui, et al. Solar radiation character and solar energy resource in Xinjiang[J]. Arid Meteorology, 2008, 26(4): 61-66.]
[5] 桑建人, 刘玉兰, 林莉. 宁夏太阳辐射特征及太阳能利用潜力综合评价[J]. 中国沙漠, 2006, 26(1): 122-125.
[5] [Sang Jianren, Liu Yulan, Lin Li. Characteristic of solar radiation in Ningxia and integrated evaluation on utilization potential of solar energy[J]. Journal of Desert Research, 2006, 26(1): 122-125.]
[6] Fouad M M, Shihata L A, Morgan E I. An integrated review of factors influencing the performance of photovoltaic panels[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 1499-1511.
[7] 张雪莉, 刘其辉, 马会萌, 等. 光伏电站输出功率影响因素分析[J]. 电网与清洁能源, 2012, 28(5): 75-81.
[7] [Zhang Xueli, Liu Qihui, Ma Huimeng, et al. Analysis of influencing factors of output power of photovoltaic power plant[J]. Advances of Power System & Hydroelectric Engineering, 2012, 28(5): 75-81.]
[8] Alsharif M H, Younes M K, Kim J. Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea[J]. Symmetry, 2019, 11(2): 240, doi: 10.3390/sym11020240.
[9] Jimenez P A, Hacker J P, Dudhia J, et al. WRF-Solar: Description and clear-sky assessment of an augmented NWP model for solar power prediction[J]. Bulletin of the American Meteorological Society, 2016, 97(7): 1249-1264.
[10] Diagne M, David M, Lauret P, et al. Review of solar irradiance forecasting methods and a proposition for small-scale insular grids[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 65-76.
[11] Aggarwal S K, Saini L M. Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013-14 solar energy prediction contest[J]. Energy, 2014, 78: 247-256.
[12] Voyant C, Notton G, Kalogirou S, et al. Machine learning methods for solar radiation forecasting: A review[J]. Renewable Energy, 2017, 105: 569-582.
[13] 马金玉, 罗勇, 申彦波, 等. 太阳能预报方法及其应用和问题[J]. 资源科学, 2011, 33(5): 829-837.
[13] [Ma Jinyu, Luo Yong, Shen Yanbo, et al. A review on methods of solar energy forecasting and its application[J]. Resources Science, 2011, 33(5): 829-837.]
[14] 蒋俊霞, 高晓清, 吕清泉. 基于地基云图的云跟踪与太阳辐照度超短期预报方法研究[J]. 太阳能学报 2020, 41(5): 351-358.
[14] [Jiang Junxia, Gao Xiaoqing, Lü Qingquan. Study on cloud tracking and solar irradiance ultra-short-term forecasting based on TSI images[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 351-358.]
[15] Lara-Fanego V, Ruiz-Arias J A, Pozo-Vázquez D, et al. Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain)[J]. Solar Energy, 2012, 86(8): 2200-2217.
[16] 赵东. 中国太阳能长期变化及计算方法研究[D]. 南京: 南京信息工程大学, 2009.
[16] [Zhao Dong. Long term changes and assessment models of solar energy over China[D]. Nanjing: Nanjing University of Information Science and Technology, 2009.]
[17] Liu B Y H, Jordan R C. The interrelationship and of direct, diffuse and characteristic distribution total solar radiation[J]. Solar Energy, 1960, 4(3): 1-19.
[18] Kumler A, Xie Y, Zhang Y. A physics-based smart persistence model for intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique[J]. Solar Energy, 2019, 177: 494-500.
[19] 刘唯佳. 基于云参量的太阳辐射短时临近预报模型的构建及预报评估[D]. 南京: 南京信息工程大学, 2021.
[19] [Liu Weijia. Construction and evaluation of cloud-property based solar radiation short-term forecast systems[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.]
[20] Xie Y, Liu Y. A new approach for simultaneously retrieving cloud albedo and cloud fraction from surface-based shortwave radiation measurements[J]. Environmental Research Letters, 2013, 8(4): 044023, doi: 10.1088/1748-9326/8/4/044023.
[21] Long C N, Gaustad K L. The shortwave (SW) clear-sky detection and fitting algorithm: Algorithm operational details and explanations[R]. United States: DOE Office of Science Atmospheric Radiation Measurement (ARM) User Facility, 2004.
[22] Liu Y, Wu W, Jensen M P, et al. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo[J]. Atmospheric Chemistry and Physics, 2011, 11(14): 7155-7170.
[23] Reda I, Andreas A. Solar position algorithm for solar radiation applications[J]. Solar Energy, 2004, 76(5): 577-589.
[24] Yang D, Alessandrini S, Antonanzas J, et al. Verification of deterministic solar forecasts[J]. Solar Energy, 2020, 210: 20-37.
[25] 于志翔, 李霞, 于晓晶, 等. 2003—2019年新疆气溶胶光学厚度时空变化特征[J]. 干旱区地理, 2022, 45(2): 346-358.
[25] [Yu Zhixiang, Li Xia, Yu Xiaojing, et al. Spatiotemporal variation characteristics of aerosol optical depth in Xinjiang from 2003 to 2019[J]. Arid Land Geography, 2022, 45(2): 346-358.]
[26] 孙小雲, 房彦杰, 赵景峰, 等. 塔克拉玛干沙漠输沙势时空分布特征[J]. 干旱区地理, 2020, 43(1): 38-47.
[26] [Sun Xiaoyun, Fang Yanjie, Zhao Jingfeng, et al. Spatial and temporal distribution characteristics of sand drift potential in Taklimakan Desert[J]. Arid Land Geography, 2020, 43(1): 38-47.]
[27] 刘畅, 李诚志, 李胜辉, 等. 基于栅格累加法的塔里木盆地沙漠化分析[J]. 干旱区地理, 2021, 44(1): 197-207.
[27] [Liu Chang, Li Chengzhi, Li Shenghui, et al. Desertification analysis based on grid accumulation method in Tarim Basin, China[J]. Arid Land Geography, 2021, 44(1): 197-207.]
文章导航

/