收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (1): 47-55.doi: 10.12118/j.issn.1000-6060.2022.259

• 气候与水文 • 上一篇    下一篇

太阳辐射短时临近预报R模型的构建及验证

姚德贵1(),刘唯佳2(),韩永翔3,李哲1,梁允1   

  1. 1.国网河南省电力公司电力科学研究院,河南 郑州 450000
    2.杭州市气象局,浙江 杭州 310051
    3.南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044
  • 收稿日期:2022-06-01 修回日期:2022-07-17 出版日期:2023-01-25 发布日期:2023-02-21
  • 通讯作者: 刘唯佳(1990-),女,博士,工程师,主要从事太阳辐射预报研究. E-mail: weijialiu90@outlook.com
  • 作者简介:姚德贵(1971-),男,博士,教授级高级工程师,主要从事电力气象研究. E-mail: 16492187@qq.com
  • 基金资助:
    国家自然基金面上项目(41875176)

Construction and validation of the R models for short-term solar irradiance forecasting

YAO Degui1(),LIU Weijia2(),HAN Yongxiang3,LI Zhe1,LIANG Yun1   

  1. 1. Electric Power Research Institute, Electric Power of Henan, Zhengzhou 450000, Henan, China
    2. Hangzhou Meteorological Bureau, Hangzhou 310051, Zhejiang, China
    3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • Received:2022-06-01 Revised:2022-07-17 Online:2023-01-25 Published:2023-02-21

摘要:

提高太阳辐射短时临近预报(<6 h)的准确率是确保电网调度的重要举措,也是极具挑战性的技术瓶颈之一。基于云-辐射关系,利用地面观测的太阳辐照度反演的云相对辐射强迫比值,构建了太阳辐射短时临近预报模型(R模型),并用美国南部大平原中心站16 a的辐照度观测数据,对R模型的预报性能进行了评估。结果表明:(1) 有云存在的个例中,R模型较传统的简单持续性模型(Simple模型)的预报性能有很大提升,相比于预报性能较高的智能持续性模型(Smart模型或RCRF模型)仍有2%~25%的改进。(2) 在16 a包含2.9×105个8类云状个例的总体检验中,当预报时效超过1 h时,R模型的预报性能显著优于Simple模型和RCRF模型。相对于RCRF模型,R模型在6 h预报时效下,对总辐射和直接辐射的预报性能可分别提高25%和19%,预报时效分别延长了1.5 h和1 h。(3) R模型为太阳辐射短时临近预报提供了准确率更高的基准模型。同时,该模型可仅依靠地面短期的辐照度观测资料即可预报,为缺少同期气象要素观测的光伏电厂的辐射预报提供了新的途径或新的可能。

关键词: 持续性模型, 短时临近预报, 预报性能, 光伏电厂

Abstract:

Improving the forecasting accuracy of solar irradiance, as an important safeguard ensuring the stability of grid operations, remains one of the challenging technical bottlenecks. This study constructs a short-time solar irradiance forecasting model (R model) based on the cloud relative radiative forcing ratio R derived by the ground-based solar irradiances from the relationship between clouds and radiation and then evaluates the forecasting accuracy of the R model using 16-year solar irradiance measurements at the Southern Great Plains Central Facility site in the United States. The results show that (1) the R model significantly outperforms the simple persistence model and exhibits a 2%-25% improvement relative to the advanced smart persistence model (also called cloud relative radiative forcing (RCRF) model herein) in the cloudy case. (2) For the overall validation with 2.9×105 individual cloudy cases in 8 categories over 16 years, the forecast accuracy of the R model is significantly better than that of the simple model and the RCRF model at lead times longer than 1 h. Compared with the RCRF model, the forecast performance of the R model is improved by 25% and 19% in global horizontal irradiance and direct normal irradiance, respectively, and the lead time is extended by 1.5 and 1 h. (3) The R model with higher forecast performance sets a higher standard for the benchmark model of short-term solar irradiance forecasting. Meanwhile, the R model only requires short-term ground-based radiation observations for forecasting, facilitating and providing new possibilities for photovoltaic power plants without concurrent meteorological measurements in short-term solar irradiance forecasting.

Key words: persistence model, short-term irradiance forecast, forecasting performance, photovoltaic power plant