气候与水文

近61 a黄河流域霜冻日期时空分异特征及影响因素

  • 张志高 ,
  • 徐晓曼 ,
  • 郭超凡 ,
  • 蔡茂堂 ,
  • 袁征 ,
  • 张明哲
展开
  • 1.安阳师范学院资源环境与旅游学院,河南 安阳 455000
    2.河南大学黄河4文明与可持续发展研究中心,河南 开封 475001
    3.中国地质科学院地质力学研究所,北京 100081
    4.安阳工学院材料科学与工程学院,河南 安阳 455000
张志高(1986-),男,博士,副教授,主要从事气候变化研究. E-mail: Zhangzhg06@163.com

收稿日期: 2022-03-30

  修回日期: 2022-04-22

  网络出版日期: 2023-02-01

基金资助

国家自然科学基金项目(41602366);河南省高等学校青年骨干教师项目(2020GGJS188);河南省科技攻关项目(222102320364);河南省高等学校重点科研项目(21A170002);河南省高等学校重点科研项目(21A170004)

Spatial and temporal characteristics and influencing factors of frost date in the Yellow River Basin from 1960 to 2020

  • Zhigao ZHANG ,
  • Xiaoman XU ,
  • Chaofan GUO ,
  • Maotang CAI ,
  • Zheng YUAN ,
  • Mingzhe ZHANG
Expand
  • 1. School of Resources Environment and Tourism, Anyang Normal University, Anyang 455000, Henan, China
    2. Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University, Kaifeng 475001, Henan, China
    3. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
    4. School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China

Received date: 2022-03-30

  Revised date: 2022-04-22

  Online published: 2023-02-01

摘要

深入研究黄河流域霜冻演变规律,可为科学防范霜冻危害,促进气候资源合理开发利用提供依据。基于1960—2020年黄河流域83个气象站点统计资料,采用Mann-Kendall突变检验、Morlet小波分析和相关分析等方法,对黄河流域霜冻日期时空变化特征及其影响因素进行了分析。结果表明:(1) 1960—2020年黄河流域平均初霜日期为10月8日,终霜日期为4月30日,平均无霜期161 d。61 a来初霜日以2.51 d·(10a)-1的速率推迟、终霜日以-2.07 d·(10a)-1的速率提前,无霜期以4.48 d·(10a)-1的速率显著延长。20世纪70年代初霜日最早,终霜日最晚,无霜期最短,21世纪10年代初霜日最晚,终霜日最早,无霜期最长。(2) 小波分析表明,黄河流域初、终霜日和无霜期均存在28 a左右的主周期变化。初霜日于2002年发生突变,终霜日于2000年突变,无霜期突变发生于2001年。(3) 从空间分布来看,由上游、中游到下游地区初霜日逐渐延迟,终霜日逐渐提前,无霜期日数逐渐延长。初霜日在流域各地均呈推迟趋势,终霜日仅在西南部合作、久治站呈推迟趋势,无霜期在各地均呈延长趋势,下游地区初霜日和无霜期变化幅度最大。(4) 黄河流域初、终霜日和无霜期主要受海拔高度和日平均气温的影响。

本文引用格式

张志高 , 徐晓曼 , 郭超凡 , 蔡茂堂 , 袁征 , 张明哲 . 近61 a黄河流域霜冻日期时空分异特征及影响因素[J]. 干旱区地理, 2022 , 45(6) : 1685 -1694 . DOI: 10.12118/j.issn.1000-6060.2022.130

Abstract

The study of the evolution characteristics of frost in the Yellow River Basin provides a basis for scientifically preventing frost hazards, promoting rational development, and use of climate resources. Based on the statistical data from 83 meteorological stations in the Yellow River Basin from 1960 to 2020, the Mann-Kendall mutation test, Morlet wavelet analysis, and correlation analysis were used to analyze the characteristics of spatial and temporal changes and influencing factors of frost date in the Yellow River Basin. The results showed that: (1) the average first frost date in the Yellow River Basin was October 8, the last frost date was April 30, and the average frost-free period was 161 days from 1960 to 2020. In the past 61 years, the first frost day was postponed at a rate of 2.51 days·(10a)-1, the last frost day was advanced at a rate of −2.07 days·(10a)-1, and the frost-free period was significantly prolonged at a rate of 4.48 days·(10a)-1. In the 1970s, the first frost day was the earliest, the last frost day was the latest, and the frost-free period was the shortest. In 2010, the first frost day was the latest, the last frost day was the earliest, and the frost-free period was the longest. (2) Wavelet analysis showed that the first and last frost days and frost-free periods had a main period of about 28 a in the Yellow River Basin. The first frost day suddenly changed in 2002, the last frost day suddenly changed in 2000, and the frost-free period suddenly changed in 2001. (3) In terms of spatial distribution, from the upper to the middle and lower reaches, the first, the last frost dates and the frost-free period were gradually delayed, advanced, and extended, respectively. The first frost day was delayed in all parts of the basin, the last frost day was delayed only in Hezuo and Jiuzhi stations in the southwest, and the frost-free period was prolonged in all parts of the basin, the variation range of the first frost date and frost-free period in the lower reaches was the largest. (4) The first and last frost days and frost-free periods in the Yellow River Basin were mainly affected by altitude and the average temperature.

参考文献

[1] IPCC. Climate change 2021: The physical science basis[R]. Cambridge and New York: Cambridge University Press, 2021.
[2] Richard R H. An overview of weather and climate extremes: Products and trends[J]. Weather and Climate Extremes, 2015, 10(PB): 1-9.
[3] 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1): 1-11.
[3] [Guo Jianping. Advances in impacts of climate change on agricultural production in China[J]. Journal of Applied Meteorological Science, 2015, 26(1): 1-11.]
[4] 马尚谦, 张勃, 刘莉莉, 等. 甘肃省霜冻日期时空变化特征及影响因素[J]. 高原气象, 2019, 38(2): 397-409.
[4] [Ma Shangqian, Zhang Bo, Liu Lili, et al. Analysis of the characteristics of temporal and spatial changes and influencing factors of frost season in Gansu Province[J]. Plateau Meteorology, 2019, 38(2): 397-409.]
[5] 许艳, 王国复, 王盘兴. 近50 a中国霜期的变化特征分析[J]. 气象科学, 2009, 29(4): 427-433.
[5] [Xu Yan, Wang Guofu, Wang Panxing. Climatic change of frost in China in recent 50 a[J]. Scienta Metorologica Scienc, 2009, 29(4): 427-433.]
[6] 白磊, 张帆, 文元桥. 基于格点资料的1961—2018年中国霜冻灾害时空变化规律[J]. 中国农业气象, 2021, 42(9): 761-774.
[6] [Bai Lei, Zhang Fan, Wen Yuanqiao. Evolution of the frost hazards based on gridded meteorological data across China in 1961—2018[J]. Chinese Journal of Agrometeorology, 2021, 42(9): 761-774.]
[7] 李芬, 张建新, 王淑凤. 1961—2012年山西终霜冻的区域特征研究[J]. 干旱区地理, 2014, 37(4): 656-666.
[7] [Li Fen, Zhang Jianxin, Wang Shufeng. Regional characteristics of last frost over Shanxi Province from 1961 to 2012[J]. Arid Land Geography, 2014, 37(4): 656-666.]
[8] Meehl G A, Tebaldi C, Nychka D. Changes in frost days in simulations of twentyfirst century climate[J]. Climate Dynamics, 2004, 23(5): 495-511.
[9] 姬兴杰, 李凤秀, 王纪军. 1971—2010年河南省霜期的时空分布特征及其对气温的响应[J]. 气象与环境学报, 2015, 31(1): 67-75.
[9] [Ji Xingjie, Li Fengxiu, Wang Jijun. Spatial-temporal distribution of frost day and its response to air temperature changes from 1971 to 2010 in Henan Province[J]. Journal of Meteorology and Environment, 2015, 31(1): 67-75.]
[10] 邢海虹. 历史时期陕西霜冷灾害时空分布特征研究[J]. 西北大学学报(自然科学版), 2014, 44(5): 829-832.
[10] [Xing Haihong. The spatial and temporal regulation of the frost and cold disaster in historical period in Shaanxi Province[J]. Journal of Northwest University (Natural Science Edition), 2014, 44(5): 829-832.]
[11] 黄莹, 杨建玲, 李欣, 等. 基于地温的宁夏初霜冻日期气候演变及环流异常成因[J]. 干旱区地理, 2022, 45(2): 359-369.
[11] [Huang Ying, Yang Jianling, Li Xin, et al. Climate change characteristics and circulation anomaly causes of the first frost date in Ningxia based on ground temperature[J]. Arid Land Geography, 2022, 45(2): 359-369.]
[12] Crimp S, Bakar K S, Kokic P, et al. Bayesian space-time model to analysis frost risk for agriculture in southeast Australia[J]. International Journal of Climatology, 2015, 35(8): 2092-2108.
[13] Heino R, Brázdil R, Frland E, et al. Progress in the study of climatic extremes in northern and central Europe[J]. Climatic Change, 1999, 42(1): 151-181.
[14] Bonsal B R, Zhang X, Vincent L A, et al. Characteristics of daily and extreme temperature over Canada[J]. Journal of Climate, 2010, 14(9): 1959-1976.
[15] 任景全, 郭春明, 王利伟, 等. 1961—2015年吉林省霜时空分布特征以及影响因素[J]. 气象与环境学报, 2018, 34(4): 119-125.
[15] [Ren Jingquan, Guo Chunming, Wang Liwei, et al. Spatial and temporal distribution characteristics and impact factors of the frost over Jilin Province from 1961 to 2015[J]. Journal of Meteorology and Environment, 2018, 34(4): 119-125.]
[16] 马尚谦, 张勃, 唐敏, 等. 1960—2015年淮河流域初终霜日时空变化分析[J]. 中国农业气象, 2018, 39(7): 468-478.
[16] [Ma Shangqian, Zhang Bo, Tang Min, et al. Analysis on the temporal and spatial changes of frost date in the Huaihe River Basin from 1960 to 2015[J]. Chinese Journal of Agrometeorology, 2018, 39(7): 468-478.]
[17] 郭俊文, 单红洮, 郭俊瑞, 等. 陇中黄土高原半干旱区霜冻时空分异特征[J]. 水土保持研究, 2020, 27(3): 101-105.
[17] [Guo Junwen, Shan Hongtao, Guo Junrui, et al. Characteristics of spatiotemporal distribution and variation of frost in semiarid regions of the Loess Plateau in central Gansu[J]. Reasearch of Soil and Water Conservation, 2020, 27(3): 101-105.]
[18] 程瑛, 吴晶, 李红, 等. 1961—2017年甘肃省霜冻演变特征及其对农业的影响[J]. 自然灾害学报, 2019, 28(6): 37-46.
[18] [Cheng Ying, Wu Jing, Li Hong, et al. The variation characteristics of frost in Gansu Province from 1961 to 2017 and its impact on agriculture[J]. Journal of Natural Disasters, 2019, 28(6): 37-46.]
[19] 宁晓菊, 张丽君, 杨群涛, 等. 1951年以来中国无霜期的变化趋势[J]. 地理学报, 2015, 70(11): 1811-1822.
[19] [Ning Xiaoju, Zhang Lijun, Yang Quntao, et al. Trends in the frost-free period in China from 1951 to 2012[J]. Acta Geographica Sinica, 2015, 70(11): 1811-1822.]
[20] 王国复, 许艳, 朱燕君, 等. 近50年我国霜期的时空分布及变化趋势分析[J]. 气象, 2009, 35(7): 61-67.
[20] [Wang Guofu, Xu Yan, Zhu Yanjun, et al. The spatial and temporal characteristics and trend of frost days over China for the past 50 years[J]. Meteorological Monthly, 2009, 35(7): 61-67.]
[21] 马彬, 张勃, 贾艳青, 等. 1961—2014年中国内陆农业区异常初、终霜日时空变化及其与环流因子的关系[J]. 气象学报, 2017, 75(4): 661-671.
[21] [Ma Bin, Zhang Bo, Jia Yanqing, et al. Temporal and spatial variations of the first and last frost dates in China’s inland agricultural region from 1961 to 2014 and their relationships with circulation factors[J]. Acta Meteorologica Sinica, 2017, 75(4): 661-671.]
[22] 陈少勇, 郑延祥, 楼望萍, 等. 中国西北地区初霜冻的气候变化特征[J]. 资源科学, 2013, 35(1): 165-172.
[22] [Chen Shaoyong, Zheng Yanxiang, Lou Wangping, et al. Changes in the first frost date from 1961 to 2009 in northwest China[J]. Resources Science, 2013, 35(1): 165-172.]
[23] 吴杨, 金志凤, 叶建刚, 等. 浙江茶树春霜冻发生规律及其与太平洋海温的遥相关分析[J]. 中国农业气象, 2014, 35(4): 434-439.
[23] [Wu Yang, Jin Zhifeng, Ye Jiangang, et al. Teleconnection analysis between spring frost damage on tea in Zhejiang Province and sea surface temperature in Pacific[J]. Chinese Journal of Agrometeorology, 2014, 35(4): 434-439.]
[24] 贾艳青, 张勃, 张耀宗, 等. 城市化对长三角地区极端气温影响的时空分异[J]. 自然资源学报, 2017, 32(5): 814-828.
[24] [Jia Yanqing, Zhang Bo, Zhang Yaozong, et al. Effect of urbanization on spatial and temporal variation of extreme temperature events in the Yangtze River Delta[J]. Journal of Natural Resources, 2017, 32(5): 814-828.]
[25] 吕佳佳, 朱海霞, 宫丽娟, 等. 1971—2016年寒地大豆霜冻害时空演变特征及对产量影响[J]. 大豆科学, 2020, 39(2): 260-268.
[25] [Lü Jiajia, Zhu Haixia, Gong Lijuan, et al. Spatial-temporal characteristics of frost damage on soybean and its effect on soybean yield from 1971 to 2016 in cold regions[J]. Soybean Science, 2020, 39(2): 260-268.]
[26] 高文波, 林正雨, 王明田, 等. 1971—2020年西南茶区灌木型茶树晚霜冻害危险性时空演变特征[J]. 应用生态学报, 2021, 32(11): 4029-4038.
[26] [Gao Wenbo, Lin Zhengyu, Wang Mingtian, et al. Spatiotemporal evolution characteristics of the late frost damage risk to shrubby tea trees in tea region, southwest China from 1971 to 2020[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4029-4038.]
[27] 马琼. 1980—2014年黄土高原霜冻时空变化及冬小麦晚霜冻危险性研究[D]. 兰州: 西北师范大学, 2016.
[27] [Ma Qiong. The temporal and spatial distribution of frost and hazard risk of winter wheat late frezzing in the Loess Plateau from 1980 to 2014[D]. Lanzhou: Northwest Normal University, 2016.]
[28] 韩荣青, 李维京, 艾婉秀, 等. 中国北方初霜冻日期变化及其对农业的影响[J]. 地理学报, 2010, 65(5): 526-532.
[28] [Han Rongqing, Li Weijing, Ai Wanxiu, et al. The climatic variability and influence of first frost dates in northern China[J]. Acta Geographica Sinica, 2010, 65(5): 526-532.]
[29] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999.
[29] [Wei Fengying. Modern climate statistical diagnosis and prediction technology[M]. Beijing: China Meteorological Press, 1999.]
[30] 钱锦霞, 张霞, 张建新, 等. 近40年山西省初终霜日的变化特征[J]. 地理学报, 2010, 65(7): 802-808.
[30] [Qian Jinxia, Zhang Xia, Zhang Jianxin, et al. The changing trends of the first and last frost dates over Shanxi Province for the past 40 years[J]. Acta Geographica Sinica, 2010, 65(7): 802-808.]
[31] 张波, 于飞, 吴战平, 等. 贵州霜冻气候变化特征[J]. 浙江农业学报, 2020, 32(4): 685-695.
[31] [Zhang Bo, Yu Fei, Wu Zhanping, et al. Climate characteristics of frost in Guizhou[J]. Acta Agriculturae Zhejiangensis, 2020, 32(4): 685-695.]
[32] 张大任, 郑静, 范军亮, 等. 近60年中国不同气候区极端温度事件的时空变化特征[J]. 中国农业气象, 2019, 40(7): 422-434.
[32] [Zhang Daren, Zheng Jing, Fan Junliang, et al. Spatiotemporal variations of extreme temperature indices in different climatic zones of China over the past 60 years[J]. Chinese Journal of Agrometeorology, 2019, 40(7): 422-434.]
[33] Reid P C, Hari R E, Beaugrand G, et al. Global impacts of the 1980s regime shift[J]. Global Change Biology, 2016, 22(2): 682-689.
文章导航

/