收稿日期: 2022-02-16
修回日期: 2022-06-13
网络出版日期: 2022-10-20
基金资助
新疆气象局引导性计划项目(YD202204);新疆气象局引导性计划项目(YD202203);自治区自然科学基金项目(2021D01A153);中国气象局西北区域人影建设研究试验项目(RYSY201902);中国气象局云雾物理环境重点开放实验室开放课题(2020Z00705);基于探测飞机资料的新疆不同地区垂直高度粒子分布特征研究项目资助
Aircraft observation and analysis of vertical distribution of aerosols in winter in Turpan and Ruoqiang
Received date: 2022-02-16
Revised date: 2022-06-13
Online published: 2022-10-20
利用2019年冬季吐鲁番和2020年冬季若羌共14次完整机载探测气溶胶资料,结合宏观天气资料及大气污染数据,研究飞机爬升或降落阶段两地上空气溶胶粒子数浓度、粒子平均粒径的垂直变化规律,分析不同高度的粒子谱分布特征。结果表明:(1) 两地冬季气溶胶粒子数浓度及粒子直径存在明显差异。在无明显天气过程下,若羌气溶胶粒子数浓度均值(5354·cm-3)明显高于吐鲁番(3948·cm-3);粒子平均粒径来看,均值差异不大,但吐鲁番出现大直径粒子(0.16
郑博华 , 陈胜 , 李圆圆 , 樊茹霞 , 孔令文 , 郝雷 . 吐鲁番和若羌冬季气溶胶垂直分布的飞机观测分析[J]. 干旱区地理, 2022 , 45(5) : 1426 -1439 . DOI: 10.12118/j.issn.1000-6060.2022.056
The vertical changes to aerosol particle number concentration and average diameter in two areas during aircraft climb or landing were studied using a total of 14 airborne aerosol detection data in Turpan City, Xinjiang, China in the winter of 2019 and Ruoqiang County, Xinjiang, China in the winter of 2020, combined with macro weather and air pollution data. The characteristics of particle spectrum distribution at different heights were analyzed. The result shows: (1) There are obvious differences in the aerosol particle number concentration and particle diameter of aerosol particles in the two places in winter. In the absence of obvious weather change, the average aerosol particle number concentration data for Ruoqiang is significantly higher than that for Turpan; there is little difference in terms of average particle diameter between the two places, but the number of large-diameter particles in Turpan was higher than that for Ruoqiang, which was closely related to the presence of more dust aerosols in Turpan. (2) The aerosol particle number concentration and average particle diameter in the two places were significantly affected by weather processes such as strong wind and precipitation, as well as the temperature inversion layer. High wind process causes an increase in particle number concentration, and there is a slow updraft before the snowfall process, resulting in the aerosol particle number concentration that is 3-4 times higher than the average value. (3) In general, the upper layers of Ruoqiang and Turpan mainly contain imported aerosols, and the lower layers are mainly localized. The issue of environmental damage and air pollution is especially serious. Under clear sky or cloudy weather conditions, the aerosol particle number concentration is generally higher in Ruoqiang than in Turpan, indicating that the number of larger diameter particles in Ruoqiang is relatively less than that in Turpan, and its geographical location determines this. There are fewer industrial activities and fewer anthropogenic activities, so there are fewer particles emitted by humans. From the analysis of the aerosol particle number concentration and average diameter, it is believed that this area primarily has a large number of small dust aerosols. (4) The particle spectrum distribution in Turpan and Ruoqiang (0.10-3.00 μm diameter) is a single-peak and double-valley distribution; the peak is mainly concentrated at 0.4 μm, and the valley is mainly concentrated between 0.15 μm to 1.60 μm. The comparison of particle size similarity between the three modes shows that there is little difference in the number spectrum distribution in the first mode in Turpan or Ruoqiang, and the similarity is high. When there is an obvious weather process, the similarity of the Turpan aerosol number spectrum in the second and third modes drops sharply, and if only the third mode changes significantly, it indicates that the temperature inversion layer inhibits particle diffusion and hinders convective movement.
[1] | 毛节泰, 张军华, 王美华. 中国大气气溶胶研究综述[J]. 气象学报, 2002, 60(5): 625-634. |
[1] | [Mao Jietai, Zhang Junhua, Wang Meihua. Summary comment on research of atmosphere aerosol in China[J]. Acta Meteorologic Sinica, 2002, 60(5): 625-634. ] |
[2] | 刘红年, 张力. 中国不同排放情景下人为气溶胶的气候效应[J]. 地球物理学报, 2012, 55(6): 1867-1875. |
[2] | [Liu Hongnian, Zhang Li. The climate effects of anthropogenic aerosols of different emission scenarios in China[J]. Chinese Journal of Geophysics, 2012, 55(6): 1867-1875. ] |
[3] | 吴蓬萍, 周长春. 人为源气溶胶的间接气候效应研究综述[J]. 高原山地气象研究, 2013, 33(2): 84-92. |
[3] | [Wu Pengping, Zhou Changchun. A review of indirect anthropogenic aerosol effect[J]. Plateau and Mountain Meteorology Research, 2013, 33(2): 84-92. ] |
[4] | Twohy C H, Durkee A, Huebert B J, et al. Effect of aerosol particles on the microphysics of coastal stratiform cloud[J]. Climate, 1995, 8(4): 773-783. |
[5] | Snder J R, Guibert S, Brenguier J L. Lack of closure between dry and wet aerosol measurements: Results from ACE-2[J]. AIP Conference Proceedings, 2000, 534(1): 627-631. |
[6] | Ianova I T, Leighton H G. Aerosol-cloud interactions in a mesoscale model[J]. Journal of the Atmospheric Sciences, 2008, 65(2): 289-308. |
[7] | LoK K, Passarelli R E. The growth of snow in winter storms: An airborne observational study[J]. American Meteorological Society, 1982, 39: 697-706. |
[8] | 王喜红, 石广玉. 东亚地区人为硫酸盐的直接辐射强迫[J]. 高原气象, 2001, 20(3): 258-263. |
[8] | [Wang Xihong, Shi Guangyu. Estimation of the direct radiative forcing due to anthropogenic sulfate over eastern Asia[J]. Plateau Meteorology, 2001, 20(3): 258-263. ] |
[9] | 张美根, 韩志伟. TRACE-P期间硫酸盐、硝酸盐和铵盐气溶胶的模拟研究[J]. 高原气象, 2003, 22(1): 1-6. |
[9] | [Zhang Meigen, Han Zhiwei. A numerical study on distribution of sulfate, nitrate and ammonium aerosols over east Asia during the TRACE-P campaign[J]. Plateau Meteorology, 2003, 22(1): 1-6. ] |
[10] | 高丽洁, 王体健, 徐永福, 等. 中国硫酸盐气溶胶及其辐射强迫的模拟[J]. 高原气象, 2004, 23(5): 612-619. |
[10] | [Gao Lijie, Wang Tijian, Xu Yongfu, et al. Modeling sulfate aerosol and its radiative forcing over China[J]. Plateau Meteorology, 2004, 23(5): 612-619. ] |
[11] | 吴兑, 邓雪娇, 叶燕翔, 等. 岭南山地气溶胶物理化学特征研究[J]. 高原气象, 2006, 25(5): 877-885. |
[11] | [Wu Dui, Deng Xuejiao, Ye Yanxiang, et al. A study on the physical and chemical features of aerosols in the area south of the Nanling Mountains[J]. Plateau Meteorology, 2006, 25(5): 877-885. ] |
[12] | 高卫东, 魏文寿, 刘明哲. 塔里木盆地区域沙尘气溶胶特征分析[J]. 干旱区地理, 2002, 25(2): 165-169. |
[12] | [Gao Weidong, Wei Wenshou, Liu Mingzhe. Analysis on the regional characteristics of sand-dust aerosol over Tarim Basin[J]. Arid Land Geography, 2002, 25(2): 165-169. ] |
[13] | 田磊, 张武, 常倬林, 等. 河西走廊干旱区春季沙尘气溶胶对辐射的影响初步研究[J]. 干旱区地理, 2018, 41(5): 923-929. |
[13] | [Tian Lei, Zhang Wu, Chang Zhuolin, et al. Influence of spring dust aerosol on radiation over the arid in Hexi Corridor[J]. Arid Land Geography, 2018, 41(5): 923-929. ] |
[14] | 申彦波, 沈志宝, 杜明远. 敦煌地区春季大气气溶胶粒子数浓度的分析[J]. 高原气象, 2007, 26(1): 158-164. |
[14] | [Shen Yanbo, Shen Zhibao, Du Mingyuan. Analysis on aerosol particle number concentration over Dunhuang region in spring[J]. Plateau Meteorology, 2007, 26(1): 158-164. ] |
[15] | 高宇潇, 刘志辉, 王敬哲. 乌鲁木市PM2.5浓度与MODIS气溶胶光学厚度相关性分析[J]. 干旱区地理, 2018, 41(2): 298-305. |
[15] | [Gao Yuxiao, Liu Zhihui, Wang Jingzhe. Correlation analysis of PM2.5 concentration and MODIS aerosol optical depth in Urumqi City[J]. Arid Land Geography, 2018, 41(2): 298-305. ] |
[16] | 范学伟, 郑有飞, 王立稳. 基于卫星资料的气溶胶对冰云影响及分布特征分析[J]. 干旱区地理, 2021, 44(2): 484-493. |
[16] | [Fan Xuewei, Zheng Youfei, Wang Liwen. Aerosols and ice clouds distribution characteristics and effects of aerosols on ice clouds based on satellite data[J]. Arid Land Geography, 2021, 44(2): 484-493. ] |
[17] | Baumgardner D. A new technique for the study of cloud microstructure[J]. Journal of Atmospheric and Oceanic Technology, 1986, 3(2): 340-343. |
[18] | 姚展予, 濮江平, 刘卫国, 等. 飞机探测云物理数据集的建立和应用[J]. 应用气象学报, 2004, 15(增刊1): 70-76. |
[18] | [Yao Zhanyu, Pu Jiangping, Liu Weiguo, et al. Foundation and application of cloud physics data set via aero-detection[J]. Journal of Applied Meteorological Science, 2004, 15(Suppl. 1): 70-76. ] |
[19] | Zhang Q, Ma X C, Tie X X, et al. Vertical distributions of aerosols under different weather conditions: Analysis of in-sit aircraft measurements in Beijing, China[J]. Atmospheric Environment, 2009, 43: 5526-5535. |
[20] | 黄梦宇, 张蔷, 赵春生, 等. 2005年北京地区大气气溶胶的初步飞机探测研究[C]// 中国气象学会2006年年会“大气成分与气候、环境变化”分会场论文集. 成都: 中国气象学会, 2006: 116-123. |
[20] | [Huang Mengyu, Zhang Qiang, Zhao Chunsheng, et al. Preliminary aircraft detection of atmospheric aerosols in Beijing in 2005[C]// Proceedings of the 2006 Annual Meeting of China Meteorological Society “Atmospheric Composition and Climate and Environmental Change”. Chengdu: China Meteorological Society, 2006: 116-123. ] |
[21] | Li J X, Li P R, Ren G, et al. Aircraft measurements of aerosol distribution, warm cloud microphysical properties, and their relationship over the eastern Loess Plateau in China[J]. Tellus B: Chemical & Physical Meteorology, 2019, 71(1): 1-18. |
[22] | 朱首正, 卜令兵, 刘继桥, 等. 机载高光谱分辨率激光雷达探测大气气溶胶光学特性及污染研究[J]. 中国激光, 2021, 48(17): 164-176. |
[22] | [Zhu Shouzheng, Bu Lingbing, Liu Jiqiao, et al. Study on airborne high spectral resolution lidar detecting optical properties and pollution of atmospheric aerosol[J]. Chinese Journal of Lasers, 2021, 48(17): 164-176. ] |
[23] | 赵德龙, 肖伟, 杨燕, 等. 北京冬季重污染过程黑碳气溶胶的飞机观测[J]. 中国环境科学, 2021, 41(12): 5539-5547. |
[23] | [Zhao Delong, Xiao Wei, Yang Yan, et al. Aircraft observation of black carbon aerosols during heavy pollution in winter Beijing[J]. China Environmental Science, 2021, 41(12): 5539-5547. ] |
[24] | 贺泓, 王新明, 王跃思, 等. 大气灰霾追因与控制[J]. 中国科学院院刊, 2013, 28(3): 344-352. |
[24] | [He Hong, Wang Xinming, Wang Yuesi, et al. Formation mechanism and control strategies of haze in China[J]. Bulletin of Chinese Academy of Sciences, 2013, 28(3): 344-352. ] |
[25] | 吴兑. 灰霾天气的形成与演化[J]. 环境科学与技术, 2011, 34(3): 157-161. |
[25] | [Wu Dui. Formation and evolution of haze weather[J]. Environmental Science & Technology, 2011, 34(3): 157-161. ] |
[26] | 金赛花, 濮江平, 张瑜, 等. 一次霾天气条件下石家庄上空大气气溶胶数浓度的飞行探测与特征分析[J]. 气象与环境科学, 2015, 38(1): 40-45. |
[26] | [Jin Saihua, Pu Jiangping, Zhang Yu, et al. Aircraft sounding and characteristic analysis of atmospheric aerosol number concentration over Shijiazhuang area in a haze day[J]. Meteorological and Environmental Sciences, 2015, 38(1): 40-45. ] |
[27] | 秦艳, 章阮, 籍裴希, 等. 华北地区霾期间对流层中低层气溶胶垂直分布[J]. 环境科学学报, 2013, 33(6): 1665-1671. |
[27] | [Qin Yan, Zhang Ruan, Ji Peixi, et al. Vertical distribution of aerosols in middle and low troposphere in northern China during haze periods[J]. Acta Scientiae Circumstantiae, 2013, 33(6): 1665-1671. ] |
[28] | 孙霞, 银燕, 孙玉稳, 等. 石家庄地区春季晴、霾天气溶胶观测研究[J]. 中国环境科学, 2011, 31(5): 705-713. |
[28] | [Sun Xia, Yin Yan, Sun Yuwen, et al. An observational study of aerosols particles tlsing aircroft over Shijiazhuang area in clean and hazy days during spring[J]. China Environmental Science, 2011, 31(5): 705-713. ] |
[29] | 高卫东, 袁玉江, 刘志辉, 等. 新疆沙尘源状况及其沙尘气溶胶释放条件分析[J]. 中国沙漠, 2008, 28(5): 968-973. |
[29] | [Gao Weidong, Yuan Yujiang, Liu Zhihui, et al. Status of dust sources and aerosol formatting condition analysis in Xinjiang[J]. Journal of Desert Research, 2008, 28(5): 968-973. ] |
[30] | 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003: 25-29. |
[30] | [Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric physics[M]. Beijing: Peking University Press, 2003: 25-29. ] |
[31] | Li W J, Zhang D Z, Shao L Y, et al. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the north China plain[J]. Atmospheric Chemistry & Physics, 2011, 11(22): 22385-22415. |
[32] | Goyal P, Sidhartha. Effect of winds on SO2 and SPM concentrations in Delhi[J]. Atmospheric Environment, 2002, 36(17): 2925-2930. |
[33] | 祁栋林, 赵全宁, 赵慧芳, 等. 2004—2017年青海省降尘的时空变化特征及区域差异[J]. 干旱气象, 2018, 36(6): 35-43. |
[33] | [Qi Donglin, Zhao Quanning, Zhao Huifang, et al. Temporal and spatial variation characteristics and regional differences of dust fall in Qinghai from 2004 to 2017[J]. Journal of Arid Meteorology, 2018, 36(6): 35-43. ] |
[34] | 王启花, 张鹏亮, 王丽霞, 等. 青海格尔木地区大气气溶胶分布的飞机观测[J]. 干旱气象, 2021, 39(4): 603-609. |
[34] | [Wang Qihua, Zhang Pengliang, Wang Lixia, et al. Aircraft measurements of distribution of aerosol over Golmud in Qinghai Province[J]. Journal of Arid Meteorology, 2021, 39(4): 603-609. ] |
/
〈 | 〉 |