收稿日期: 2021-10-19
修回日期: 2021-11-10
网络出版日期: 2022-08-11
基金资助
第二次青藏高原综合科学考察研究子专题(2019QZKK010206);中国沙漠气象科学基金(Sqj2020003);国家自然科学基金项目(41975095);天山青年计划―杰出青年科技人才项目(2019Q007)
Characteristics of radial growth at different trunk heights of Picea schrenkiana and its climate response in the mountainous area of the Ili Region
Received date: 2021-10-19
Revised date: 2021-11-10
Online published: 2022-08-11
采集新疆伊犁地区雪岭云杉(Picea schrenkiana)1.3 m、5 m、10 m、15 m、20 m和25 m树干高度树轮样本并研制其树轮宽度年表。通过相关分析得出不同树干高度树木径向生长对气候要素的响应关系及其稳定性,并计算出不同气象因子的相对贡献率和绝对贡献率。结果表明:(1) 不同树干高度具有相似的径向生长变化特征,且平均气温和降水量的影响主要表现为各树干高度树轮宽度与当年9月降水量的显著负相关,与上年11月平均气温的显著正相关,并且5 m至25 m树干高度处还受当年7月降水量的影响。(2) 通过贡献率量化各树干高度气象因子影响情况,1.3 m和5 m树干高度的主要影响因子是平均气温,而10 m、15 m、20 m和25 m树干高度的主要影响因子则是降水量。(3) 滑动相关分析得到各树干高度对气候变化响应的稳定性存在差异,主要表现为各树干高度处与上年12月平均气温相关性减弱,与当年6月平均气温相关性先增强后减弱,与上年9月平均气温负相关性增强;1.3 m至15 m树干高度与当年9月降水量负相关性增强,10 m至25 m树干高度与当年1月降水量相关性减弱。通过分析不同树干高度树木径向生长与气候要素的关系,有助于了解各树干高度树木径向生长与气候响应的差异,为开展更精确的气候重建提供参考。
刘可祥 , 张同文 , 张瑞波 , 喻树龙 , 黄力平 , 姜盛夏 , 胡东宇 . 伊犁山区雪岭云杉(Picea schrenkiana)不同树干高度树木径向生长特征及其对气候响应[J]. 干旱区地理, 2022 , 45(4) : 1010 -1021 . DOI: 10.12118/j.issn.1000-6060.2021.482
To analyze the radial growth characteristics at different trunk heights of Picea schrenkiana and the influence of meteorological elements on radial growth at each trunk height and the stability to combat climate change, we collected tree ring samples from different trunk heights (1.3 m, 5 m, 10 m, 15 m, 20 m, and 25 m) of Picea schrenkiana and examined the development of tree ring width chronologies in Ili Region, Xinjiang. Based on the correlation analysis, we conclude that the response relationship of radial growth at different trunk heights and its stability. Then, we computed the relative and absolute contribution rates of meteorological elements. The findings show the following. (1) The radial growth patterns are similar at different trunk heights, and it is jointly influenced by temperature and precipitation. All tree trunk heights had a significantly positive correlation with the September precipitation of the current year and the November temperature of the previous year. Simultaneously, the tree trunk height of 5-25 m had a significantly positive correlation with July precipitation of the current year. (2) Quantification of the meteorological elements’ influence on each tree trunk height through contribution rate shows that temperature is the primary element for tree trunk heights of 1.3 m and 5 m, and precipitation is the primary element for tree trunk heights of 10 m, 15 m, 20 m, and 25 m. (3) Moving average analysis showed a variation between the stable response to climate change at each tree trunk height, predominantly expressing that the correlation with the December temperature of the previous year was attenuated at each tree trunk height. The correlation with the June temperature of the current year was enhanced first and then attenuated. The negative correlation with the September temperature of the previous year was enhanced and that with September precipitation of the current year was also enhanced at tree trunk heights of 1.3 m, 5 m, 10 m, and 15 m. Furthermore, the correlation with January precipitation was attenuated at tree trunk heights of 10 m, 15 m, 20 m, and 25 m. By analyzing the relationship between radial growth and climate factors at different trunk heights, it is helpful to understand the difference between radial growth and climate response of trees at different trunk height, which provide reference for more accurate climate reconstruction.
Key words: Picea schrenkiana; tree-ring; trunk height; radial growth; climate response
[1] | Cook E R, Anchukaitis K J, Buckley B M, et al. Asian monsoon failure and mega drought during the last millennium[J]. Science, 2010, 328: 486-489. |
[2] | Shao X, Xu Y, Yin Z Y, et al. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Science Reviews, 2010, 29: 2111-2122. |
[3] | Yang B, Qin C, Wang J L, et al. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proc Natl Acad Sci USA, 2014, 111: 2903-2908. |
[4] | 刘禹, 蔡文炬, 孙长峰, 等. 人为气溶胶排放导致最近80年东亚夏季风在过去四个世纪以来空前减弱[J]. 地球环境学报, 2019, 10(6): 527-542. |
[4] | [ Liu Yu, Cai Wenju, Sun Changfeng, et al. Anthropogenic aerosols cause recent pronounced weakening of Asian summer monsoon relative to last four centuries[J]. Journal of Earth Environment, 2019, 10(6): 527-542. ] |
[5] | Cook E R, Kairiukstis L A. Methods of dendrochronology: Applications in the environmental sciences[M]. Dordrecht: Kluwer Academic Publishers, 1990: 23-35. |
[6] | Holgèn P, Söderberg U, Hånell B. Diameter increment in Picea abies shelterwood stands in northern Sweden[J]. Scandinavian Journal of Forest Research, 2003, 18: 163-167. |
[7] | Muhairwe C K. Tree form and taper variation over time for interior lodgepole pine[J]. Canadian Journal of Forest Research, 1994, 24: 1904-1913. |
[8] | Meng S X, Lieffers V J, Reid D E B. Reducing stem bending increases the height growth of tall pines[J]. Journal of Experimental Botany, 2006, 57: 3175-3182. |
[9] | Peltola H, Miina J, Rouvinen I, et al. Effect of early thinning on the diameter growth distribution along the stem of Scots pine[J]. Silva Fenn, 2002, 36: 813-825. |
[10] | Zhang T W, Huang L P, Zhang R B, et al. The impacts of climatic factors on radial growth patterns at different stem heights in Schrenk spruce (Picea schrenkiana)[J]. Trees, 2020, 34: 163-175. |
[11] | 刘可祥, 张同文, 张瑞波, 等. 不同树高处树轮密度变化特征及其对气候的响应[J]. 应用生态学报, 2021, 32(2): 503-512. |
[11] | [ Liu Kexiang, Zhang Tongwen, Zhang Ruibo, et al. Characteristics of tree-ring density at different stem heights and their climatic responses[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 503-512. ] |
[12] | 张雪, 高露双, 丘阳, 等. 长白山红松不同树高处径向生长特征及其对气候的响应[J]. 生态学报, 2015, 35(9): 2978-2984. |
[12] | [ Zhang Xue, Gao Lushuang, Qiu Yang, et al. Characteristics of Korean pine (Pinus koraiensis) radial growth at different heights and its response to climate change on Changbai Mountain[J]. Acta Ecologica Sinica, 2015, 35(9): 2978-2984. ] |
[13] | D’Arrigo R, Wilson R, Jacoby G. On the long-term context for late twentieth century warming[J]. Journal of Geophysical Research, 2006, 111: D303103, doi: 10.1029/2005jd006352. |
[14] | 方克艳, 陈秋艳, 刘昶智, 等. 树木年代学的研究进展[J]. 应用生态学报, 2014, 25(7): 1879-1888. |
[14] | [ Fang Keyan, Chen Qiuyan, Liu Changzhi, et al. Research advances in dendrochronology[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 1879-1888. ] |
[15] | 刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 2001, 16(1): 71-78. |
[15] | [ Liu Guohua, Fu Bojie. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001, 16(1): 71-78. ] |
[16] | D’Arrigo R, Wilson R, Liepert B, et al. On the ‘divergence problem’in northern forests: A review of the tree-ring evidence and possible causes[J]. Global and Planetary Change, 2007, 60: 289-305. |
[17] | Wilson R, D’Arrigo R, Buckley B, et al. A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data[J]. Journal of Geophysical Research-Atmospheres, 2007, 112: D17103, doi: 10.1029/2006JD008318. |
[18] | Zhang T W, Zhang R B, Jiang S X, et al. On the ‘Divergence Problem’ in the Alatau Mountains Central Asia: A study of the response of Schrenk spruce tree-ring width to climate under the recent warming and wetting trend[J]. Atmosphere, 2019, 10: 473, doi: 10.3390/atmos10080473. |
[19] | 苟晓霞, 张同文, 喻树龙, 等. 不同生境下圆柏径向生长的气候响应[J]. 生态学杂志, 2021, 40(6): 1574-1588. |
[19] | [ Gou Xiaoxia, Zhang Tongwen, Yu Shulong, et al. Response of radial growth of Juniperus seravschanica to climate changes in different environmental conditions[J]. Chinese Journal of Ecology, 2021, 40(6): 1574-1588. ] |
[20] | 焦亮, 王玲玲, 李丽, 等. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(3): 320-330. |
[20] | [ Jiao Liang, Wang Lingling, et al. Divergent response of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China[J]. Chinese Journal of Plant Ecology, 2019, 43(3): 320-330. ] |
[21] | 周子建, 江源, 董满宇, 等. 长白山北坡不同海拔红松径向生长-气候因子关系对气温突变的响应[J]. 生态学报, 2018, 38(13): 4668-4676. |
[21] | [ Zhou Zijian, Jiang Yuan, Dong Manyu, et al. Response of the relationship between radial growth and climatic factors to abrupt change of temperature along an altitudinal gradient on the northern slope of Changbai Mountain, northeast China[J]. Acta Ecologica Sinica, 2018, 38(13): 4668-4676. ] |
[22] | 张赟, 尹定财, 田昆, 等. 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应[J]. 植物生态学报, 2018, 42(6): 629-639. |
[22] | [ Zhang Yun, Yin Dingcai, Tian Kun, et al. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountains, southwest China[J]. Chinese Journal of Plant Ecology, 2018, 42(6): 629-639. ] |
[23] | 秦莉, 尚华明, 张同文, 等. 天山南北坡树轮稳定碳同位素对气候的响应差异[J]. 生态学报, 2021, 41(14): 5713-5724. |
[23] | [ Qin Li, Shang Huaming, Zhang Tongwen, et al. Response comparison of the tree-ring δ13C to climate on the southern and northern slope of Tianshan Mountains[J]. Acta Ecologica Sinica, 2021, 41(14): 5713-5724. ] |
[24] | 吴燕良, 甘淼, 于瑞德, 等. 基于树轮生理模型的雪岭云杉径向生长的模拟研究[J]. 干旱区地理, 2020, 43(1): 64-71. |
[24] | [ Wu Yanliang, Gan Miao, Yu Ruide, et al. Process-based modeling radial growth of Picea schrenkiana in the eastern Tianshan Mountains[J]. Arid Land Geography, 2020, 43(1): 64-71. ] |
[25] | 牛军强, 袁玉江, 张同文, 等. 利用树木年轮重建阿勒泰地区1572-2014年初夏平均温度[J]. 干旱区地理, 2021, 44(1): 27-35. |
[25] | [ Niu Junqiang, Yuan Yujiang, Zhang Tongwen, et al. Reconstruction of early summer temperature during 1572-2014 from tree-rings in the Altay Prefecture[J]. Arid Land Geography, 2021, 44(1): 27-35. ] |
[26] | 张瑞波, 袁玉江, 魏文寿, 等. 天山山区树轮气候研究若干进展[J]. 沙漠与绿洲气象, 2016, 10(4): 1-9. |
[26] | [ Zhang Ruibo, Yuan Yujiang, Wei Wenshou, et al. Research advances of dendroclimatology in Tianshan Mountains[J]. Desert and Oasis Meteorology, 2016, 10(4): 1-9. ] |
[27] | 张同文, 王丽丽, 袁玉江, 等. 利用树轮宽度资料重建天山中段南坡巴仑台地区过去645年来的降水变化[J]. 地理科学, 2011, 31(2): 251-256. |
[27] | [ Zhang Tongwen, Wang Lili, Yuan Yujiang, et al. A 645-year precipitation reconstruction in Baluntai Region on southern slope of mid-Tianshan Mountains based on tree-ring width[J]. Scientia Geographica Sinica, 2011, 31(2): 251-256. ] |
[28] | 张晴, 于瑞德, 郑宏伟, 等. 天山东部不同海拔西伯利亚落叶松对气候变暖的响应分析[J]. 植物研究, 2018, 38(1): 14-25. |
[28] | [ Zhang Qing, Yu Ruide, Zheng Hongwei, et al. Response analysis of Larix sibirica to climate warming at different elevations in the eastern Tianshan Mountains[J]. Bulletin of Botanical Research, 2018, 38(1): 14-25. ] |
[29] | 喻树龙. 新疆伊犁巩乃斯地区树木年轮密度对气候的响应及气候重建[D]. 乌鲁木齐: 新疆师范大学, 2011. |
[29] | [ Yu Shulong. Response relationship between tree-ring density and climatic factors and climate reconstruction in Gongnaisi Region of Yili, Xinjiang[D]. Urumqi: Xinjiang Normal University, 2011. ] |
[30] | 杜海燕, 常顺利, 宋成程, 等. 天山雪岭云杉森林菌根真菌多样性及其影响因子[J]. 干旱区研究, 2019, 36(5): 1194-1201. |
[30] | [ Du Haiyan, Chang Shunli, Song Chengcheng, et al. Diversity and influence factors of mycorrhizal fungi in Picea schrenkiana forests across Tianshan Mountains[J]. Arid Zone Research, 2019, 36(5): 1194-1201. ] |
[31] | Stokes M A, Smiley T L. An introduction to tree-ring dating[M]. Tucson: University of Arizona Press, 1996: 1-173. |
[32] | Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bull, 1983, 43: 69-75. |
[33] | Groemping U. Relative importance for linear regression in R: The package relaimpo[J]. Journal Statistical Software, 2006, 17: 1-27. |
[34] | 周鹏, 黄建国, 梁寒雪, 等. 不同海拔温度和降水对新疆阿尔泰山西伯利亚落叶松径向生长的影响[J]. 热带亚热带植物学报, 2019, 27(6): 623-632. |
[34] | [ Zhou Peng, Huang Jianguo, Liang Hanxue, et al. Effect of temperature and precipitation on radial growth of Larix sibirica along altitudinal gradient on Altay Mountains, Xinjiang, China[J]. Journal of Tropical and Subtropical Botany, 2019, 27(6): 623-632. ] |
[35] | 勾晓华, 邵雪梅, 王亚军, 等. 祁连山东部地区树木年轮年表的建立[J]. 中国沙漠, 1999, 19(4): 234-237. |
[35] | [ Gou Xiaohua, Shao Xuemei, Wang Yajun, et al. The establishment of tree-ring chronology in east region of Qilian Mountains[J]. Journal of Desert Research, 1999, 19(4): 234-237. ] |
[36] | 曹仁杰, 尹定财, 田昆, 等. 丽江老君山海拔上限长苞冷杉(Abies georgei)和云南铁杉(Tsuga dumosa)径向生长对气候变化的响应[J]. 生态学报, 2020, 40(17): 6067-6076. |
[36] | [ Cao Renjie, Yin Dingcai, Tian Kun, et al. Response of radial growth of Abies georgei and Tsuga dumosa to climate change at upper distributional limits on Laojun Mountain, Lijiang, Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(17): 6067-6076. ] |
[37] | 余佳霖, 张卫国, 田昆, 等. 普达措国家公园海拔上限3个针叶树种径向生长对气候变化的响应[J]. 北京林业大学学报, 2017, 39(1): 43-51. |
[37] | [ Yu Jialin, Zhang Weiguo, Tian Kun, et al. Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-la southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 43-51. ] |
[38] | Rolland C. Tree-ring and climate relationships for Abies allba in the internal Alps[J]. Tree-Ring Society, 1993, 53: 1-11. |
[39] | 赖志华. 长苞铁杉幼苗对极端温度和外源钙的适应与响应机制[D]. 厦门: 厦门大学, 2007. |
[39] | [ Lai Zhihua. Response and adaptation mechanism of seedlings of Tsuga longibracteata to extreme temperature and extrinsic calcium[D]. Xiamen: Xiamen University, 2007. ] |
[40] | 赵志江, 郭文霞, 康东伟, 等. 川西亚高山岷江冷杉和紫果云杉径向生长对气候因子的响应[J]. 林业科学, 2019, 55(7): 1-16. |
[40] | [ Zhao Zhijiang, Guo Wenxia, Kang Dongwei, et al. Response of radial growth of Abies faxoniana and Picea purpurea to climatic factors in subalpine of western Sichuan[J]. Scientia Silvae Sinicae, 2019, 55(7): 1-16. ] |
[41] | 陈景玲, 吴明, 杨喜田. 山毛桃-侧柏混交林对侧柏的荫蔽效应[J]. 河南农业大学学报, 2014, 48(5): 579-584. |
[41] | [ Chen Jingling, Wu Ming, Yang Xitian. Microclimate effect of mixed forest Platycladus orientalis and Prunus davidiana on Platycladus orientalis afforestation[J]. Journal of Henan Agricultural University, 2014, 48(5): 579-584. ] |
[42] | 刘盛, 张友祥, 李想, 等. 管道模型和树木年轮水分输导模式的理论及在落叶松生产力估测中的应用[J]. 北京林业大学学报, 2021, 43(3): 18-26. |
[42] | [ Liu Sheng, Zhang Youxiang, Li Xiang, et al. Application of pipe model and the theory of mater transportation pattern through tree rings in larch productivity estimation[J]. Journal of Beijing Forestry University, 2021, 43(3): 18-26. ] |
[43] | 刘盛, 宋彩民, 李国伟. 4种林木年轮水分输导模式研究[J]. 北京林业大学学报, 2011, 33(2): 14-18. |
[43] | [ Liu Sheng, Song Caimin, Li Guowei. Patterns of water transport in tree rings of four tree species[J]. Journal of Beijing Forestry University, 2011, 33(2): 14-18. ] |
[44] | Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103: 551-560. |
[45] | Ryan M G, Yodar B J. Hydraulic limits to tree height and tree growth[J]. Bioscience, 1997, 47: 235-242. |
[46] | Chuine I, Morin X, Bugmann H. Warming, photoperiods, and tree phenology[J]. Science, 2010, 329: 277-278. |
[47] | Hänninen H, Kramer K, Tanino K, et al. Experiments are necessary in process-based tree phenology modelling[J]. Trends in Plant Science, 2019, 24: 199-209. |
/
〈 | 〉 |