昆仑山北麓两次极端暴雨水汽特征对比分析
收稿日期: 2021-09-06
修回日期: 2021-11-02
网络出版日期: 2022-05-31
基金资助
第二次青藏高原综合科学考察研究项目(2019QZKK0102);国家重点研发计划项目(2019YFC1510501)
Comparative analysis of on water vapor characteristics of two extreme rainstorms in the north slope of Kunlun Mountains
Received date: 2021-09-06
Revised date: 2021-11-02
Online published: 2022-05-31
使用高空、地面观测资料、地面自动站雨量资料和美国国家环境预报中心(NCEP)再分析资料,通过水汽通量诊断分析、后向轨迹模型等方法,分析了昆仑山北麓和田地区2020年5月5-7日(简称“05·06”过程)和2021年6月14-17日(简称“06·15”过程)两次极端暴雨过程的环流形势、中尺度系统、水汽输送和收支特征。结果表明:(1) 两次暴雨过程有共同的特点:影响系统都为中亚低涡,均有来自里海、咸海一带的水汽输送;对流层低层偏东急流作用显著,最强水汽辐合集中在700~850 hPa。(2) 两次暴雨过程也有明显差异:“05·06”过程的南亚高压为带状分布,水汽输送路径为西方和偏东路径,其中西方路径水汽输送最明显,西边界水汽输入贡献占88%;“06·15”过程的南亚高压为双体型,水汽输送路径为北方和偏南路径,水汽来自阿拉伯海和孟加拉湾的偏南气流向北输送,南方路径输送量远远大于其他路径,南边界水汽输入贡献占78%。(3) 和田大气可降水量(PW)增大尤其是超过平均状态时,对强降水出现有指示意义,当PW≥20 mm以上时,可能会出现暴雨或极端暴雨天气。
李海花 , 闵月 , 李桉孛 , 李如琦 . 昆仑山北麓两次极端暴雨水汽特征对比分析[J]. 干旱区地理, 2022 , 45(3) : 715 -724 . DOI: 10.12118/j.issn.1000-6060.2021.397
On the basis of the meteorological observation data and the National Centers for Environmental Prediction reanalysis data and using water vapor flux diagnosis analysis and the hybrid single-particle lagrangian integrated trajectory model, two extreme rainstorms that occurred on May 5—7, 2020 (the “05·06”rainstorm), and June 14—17, 2021 (the “06·15”rainstorm), in the Hotan Prefecture, Xinjiang in the north slope of Kunlun Mountains, China were analyzed to study the transport mechanism of water vapor and its budget in the process. The results revealed that (1) the influence system of the two rainstorms was the Central Asian vortex, and they both received water vapor from the Caspian Sea and Aral Sea. During the two rainstorms, there was a clear easterly jet in the lower troposphere, and the strongest water vapor convergence was at the level of 700-850 hPa. (2) The difference between the two rainstorms was that in the “05·06” rainstorm, the South Asia High was banded. Its water vapor transport path was from the west and east, and mainly from the west, because the west path contributed 88% of the total water vapor transport. However, in the “06·15” rainstorm, the South Asia High was bimodal. Its water vapor transport path was from the north and south, and mainly from the south, which contributed 78% of the total water vapor transport. (3) The southerly flow from the Arabian Sea and Bay of Bengal transported water vapor to the north. When the atmospheric precipitable water in the Hotan region increases, particularly exceeding the average state, heavy precipitation may occur. Rainstorm or extreme rainstorm is more likely to occur when the precipitable water is ≥20 mm.
[1] | 周云霞, 翟丽萍, 何珊珊. 2019年“5.27”广西靖西市极端暴雨成因及可预报性分析[J]. 气象研究与应用, 2020, 41(2): 68-74. |
[1] | [ Zhou Yunxia, Zhai Liping, He Shanshan. Causes and predictability of extreme rainstorm in Jingxi City on May 27, 2019[J]. Journal of Meteorological Research and Application, 2020, 41(2): 68-74. ] |
[2] | 黄治勇, 王婧羽, 周文. 2020年7月4-8日长江中游极端暴雨特征分析[J]. 暴雨灾害, 2021, 40(4): 333-341. |
[2] | [ Huang Zhiyong, Wang Jingyu, Zhou Wen. Characteristics analysis of an extreme heavy rain event in the middle reaches of the Yangtse River from July 4 to 8 in 2020[J]. Torrential Rain and Disasters, 2021, 40(4): 333-341. ] |
[3] | 孔祥伟, 杨建才, 李红, 等. 河西走廊西部干旱区一次极端暴雨天气的水汽特征分析[J]. 气象, 2021, 47(4): 412-423. |
[3] | [ Kong Xiangwei, Yang Jiancai, Li Hong, et al. Analysis on water vapor characteristics of an extreme rainstorm in the arid region of western Hexi Corridor[J]. Meteorological Monthly, 2021, 47(4): 412-423. ] |
[4] | 陈晓娟, 王咏青, 毛璐, 等. 贺兰山区两次极端暴雨动力作用数值模拟分析[J]. 干旱区研究, 2020, 37(3): 680-688. |
[4] | [ Chen Xiaojuan, Wang Yongqing, Mao Lu, et al. Numerical simulation analysis of the dynamic effects of terrain on two extreme rainstorms on Helan Mountain[J]. Arid Zone Research, 2020, 37(3): 680-688. ] |
[5] | 孙继松, 雷蕾, 于波, 等. 近10年北京地区极端暴雨事件的基本特征[J]. 气象学报, 2015, 73(4): 609-623. |
[5] | [ Sun Jisong, Yu Bo, et al. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area[J]. Acta Meteorologica Sinica, 2015, 73(4): 609-623. ] |
[6] | 肖递祥, 杨康权, 俞小鼎, 等. 四川盆地极端暴雨过程基本特征分析[J]. 气象, 2017, 43(10): 1165-1175. |
[6] | [ Xiao Dixiang, Yang Kangquan, Yu Xiaoding, et al. Characteristics analyses of extreme rainstorm events in Sichuan Basin[J]. Meteorological Monthly, 2017, 43(10): 1165-1175. ] |
[7] | 黄思先, 王保, 翟红楠. 2019年5月湖北东部一次大暴雨过程诊断分析[J]. 沙漠与绿洲气象, 2021, 15(3): 38-45. |
[7] | [ Huang Sixian, Wang Bao, Zhai Hongnan. Diagnostic analysis of a heavy rainstorm process in eastern Hubei Province in May 2019[J]. Desert and Oasis Meteorology, 2021, 15(3): 38-45. ] |
[8] | 林彤, 桑建人, 姚展予, 等. 基于微波辐射计的宁夏六盘山西侧大气水汽变化特征[J]. 干旱区地理, 2021, 44(4): 923-932. |
[8] | [ Lin Tong, Sang Jianren, Yao Zhanyu, et al. Statistical analysis of water vapor change characteristics over the west valley of Liupan Mountain area based on microwave radiometer[J]. Arid Land Geography, 2021, 44(4): 923-932. ] |
[9] | 黄艳, 俞小鼎, 陈天宇, 等. 南疆短时强降水概念模型及环境参数分析[J]. 气象, 2018, 44(8): 1033-1041. |
[9] | [ Huang Yan, Yu Xiaoding, Chen Tianyu, et al. Analysis of conceptual models and ambient parameter of short time severe rainfall in south Xinjiang[J]. Meteorological Monthly, 2018, 44(8): 1033-1041. ] |
[10] | 张云恵, 陈春艳, 杨莲梅, 等. 南疆西部一次罕见暴雨过程的成因分析[J]. 高原气象, 2013, 32(1): 191-200. |
[10] | [ Zhang Yunhui, Chen Chunyan, Yang Lianmei, et al. Cause analysis on rare rainstorm in west of southern Xinjiang[J]. Plateau Meteorology, 2013, 32(1): 191-200. ] |
[11] | 张俊兰, 魏荣庆, 杨柳. 2013年南疆2场罕见暴雨落区和强度的对比分析[J]. 沙漠与绿洲气象, 2014, 8(5): 1-9. |
[11] | [ Zhang Junlan, Wei Rongqing, Yang Liu. Comparative analysis of two rare heavy rainfall area and intensity over the southern Xinjiang in 2013[J]. Desert and Oasis Meteorology, 2014, 8(5): 1-9. ] |
[12] | 热孜瓦古·孜比布拉, 吕新生, 王鹏飞, 等. 2020年春季南疆西部一次极端暴雨成因分析[J]. 沙漠与绿洲气象, 2021, 15(3): 20-28. |
[12] | [ Zibibula Reziwagu, Lü Xinsheng, Wang Pengfei, et al. Analysis of an extreme rainstorm in west of southern Xinjiang in spring 2020[J]. Desert and Oasis Meteorology, 2021, 15(3): 20-28. ] |
[13] | 张云惠, 李海燕, 蔺喜禄, 等. 南疆西部持续性暴雨环流背景及天气尺度的动力过程分析[J]. 气象, 2015, 41(7): 816-824. |
[13] | [ Zhang Yunhui, Li Haiyan, Lin Xilu, et al. Analysis of continuous rainstorm circulation background and the dynamic process of synoptic scale in west of southern Xinjiang[J]. Meteorological Monthly, 2015, 41(7): 816-824. ] |
[14] | 曾勇, 杨莲梅. 南疆西部一次暴雨强对流过程的中尺度特征分析[J]. 干旱气象, 2017, 35(3): 475-484. |
[14] | [ Zeng Yong, Yang Lianmei. Mesoscale characteristic analysis of a severe convective weather with torrential rain in the west of southern Xinjiang[J]. Journal of Arid Meteorology, 2017, 35(3): 475-484. ] |
[15] | 赵克明, 黄艳, 于碧馨. 2013年南疆西部暴雨天气的水汽特征[J]. 气象科技, 2017, 45(1): 121-130. |
[15] | [ Zhao Keming, Huang Yan, Yu Bixin. Water vapor characteristics of rainstorm weather processes over western south Xinjiang in 2013[J]. Meteorological Science and Technology, 2017, 45(1): 121-130. ] |
[16] | 努尔比亚·吐尼牙孜, 杨利鸿, 米日古丽·米吉提. 南疆西部一次突发极端暴雨成因分析[J]. 沙漠与绿洲气象, 2017, 11(6): 75-82. |
[16] | [ Tunyaz Nurbiye, Yang Lihong, Mejet Mehregul. Cause analysis on a sudden extreme rainstorm in the west of southern Xinjiang[J]. Desert and Oasis Meteorology, 2017, 11(6): 75-82. ] |
[17] | 杨霞, 张云惠, 张超, 等. 南疆西部“5·21”极端大暴雨成因分析[J]. 沙漠与绿洲气象, 2020, 14(1): 21-30. |
[17] | [ Yang Xia, Zhang Yunhui, Zhang Chao, et al. Causation analysis of the 21 May 2018 torrential rain in the west of southern Xinjiang[J]. Desert and Oasis Meteorology, 2020, 14(1): 21-30. ] |
[18] | 郑博华, 陈胜, 王勇, 等. 喀什地区降水(雨雪)的日变化特征[J]. 干旱区地理, 2020, 43(1): 108-115. |
[18] | [ Zheng Bohua, Chen Sheng, Wang Yong, et al. Interdiurnal variation characteristics of precipitation (rain and snow) in Kashi Prefecture[J]. Arid Land Geography, 2020, 43(1): 108-115. ] |
/
〈 |
|
〉 |