气候与水文

基于生态恢复的阿克苏河流域生态输水调度优化研究

  • 聂艳 ,
  • 郭永瑞 ,
  • 谭盈 ,
  • 黄卫东 ,
  • 刘新华
展开
  • 1.华中师范大学地理过程分析与模拟湖北省重点实验室,湖北 武汉 430079
    2.中国城市规划设计研究院深圳分院,广东 深圳 518000
    3.新疆维吾尔自治区塔里木河流域阿克苏管理局,新疆 阿克苏 841000
聂艳(1977-),男,副教授,主要从事自然资源评价、土壤生态研究. E-mail: nieyan@ccnu.edu.cn

收稿日期: 2021-06-28

  修回日期: 2021-09-28

  网络出版日期: 2022-04-02

基金资助

国家自然科学基金(41401232);塔里木河流域阿克苏管理局课题资助(TGJAKSJJG-2019KYXM0002)

Operation optimization of ecological water conveyance in Aksu River Basin based on ecological restoration

  • Yan NIE ,
  • Yongrui GUO ,
  • Ying TAN ,
  • Weidong HUANG ,
  • Xinhua LIU
Expand
  • 1. Hubei Provincial Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan 430079, Hubei, China
    2. Shenzhen Branch of China Academy of Urban Planning and Design Institute, Shenzhen 518000, Guangdong, China
    3. Aksu Administration Bureau of Tarim River Basin of Xinjiang, Aksu 841000, Xinjiang, China

Received date: 2021-06-28

  Revised date: 2021-09-28

  Online published: 2022-04-02

摘要

生态输水调度是生态保护和恢复最有效的措施之一,实施生态输水对恢复干旱半干旱地区天然生态系统、维护绿洲生态系统健康具有重要意义。结合阿克苏河流域生态输水现状,在识别自然植被重点区和估算生态需水的基础上,建立了基于生态恢复目标的流域生态输水调度优化框架。首先采用高分系列影像识别自然植被信息,建立阿克苏河流域2015—2020年自然植被数据集,逐像元统计自然植被出现频次确定了艾希曼湖湿地区、第一师边缘胡杨林区、五团边缘胡杨林区3个自然植被重点区,面积达1257.69 km2;借助面积定额法和水量平衡法估算3个自然植被重点区的生态输水量分别为1.53×108 m3、2.73×108 m3、1.14×108 m3;确定了流域生态输水的最佳时间为5—9月,单次或2次进行生态输水,建议单次生态输水量大于0.2×108 m3且输水天数大于10 d;渠系网络分析显示3个自然植被重点区设置的8个输水口可以作为今后生态输水路径的参考。研究结果对阿克苏河流域生态输水调度、生态用水精细管理等具有重要的指导价值。

本文引用格式

聂艳 , 郭永瑞 , 谭盈 , 黄卫东 , 刘新华 . 基于生态恢复的阿克苏河流域生态输水调度优化研究[J]. 干旱区地理, 2022 , 45(2) : 325 -332 . DOI: 10.12118/j.issn.1000–6060.2021.294

Abstract

Ecological operation is one of the most effective measures for ecological restoration and protection. Natural vegetation or lake is an essential part of the terrestrial ecosystem, and ecological water demand is an important foundation for the health of oasis ecosystems in arid and semi-arid regions. Therefore, it is essential to conduct ecological water conveyance projects to recover and maintain ecosystem health. In this study, combined with the current situation of ecological water conveyance in the Aksu River Basin, southern Xinjiang, China, the optimization framework of ecological water conveyance in the Aksu River Basin was established by identifying the key natural vegetation regions and estimating ecological water demand. First, the GF-1 image was used to identify the natural vegetation information, and the natural vegetation dataset of the Aksu River Basin from 2015 to 2020 was established. The occurrence frequency was counted pixel by pixel, and three key natural vegetation regions were obtained. They are Eichmann Lake Wetland, Populus euphratica forest region on the edge of the first division, and the Populus euphratica forest region on the edge of Wutuan. The total area reaches 1257.69 km 2. The area quota method and water balance method were used to estimate the amount of ecological water demand. The results show that the ecological water demand of the three key natural vegetation regions is 1.53×108 m3, 2.73×108 m3, and 1.14×108 m3, respectively. Based on the monthly distribution of ecological water stock in the basin and the seasonal changes in water demand for natural vegetation growth, the best time for ecological water conveyance is from May to September. The single or two water conveyance jobs can be conducted in a year, suggesting that the single ecological water conveyance volume should be more than 0.2×108 m3. Additionally, the water conveyance days should be more than ten days. The analysis of the canal network suggests setting up a new ecological water conveyance path with eight ecological water gates of three key natural vegetation regions. This research can provide the basis for the rational allocation of water resources in the Aksu River Basin. It can also provide a valuable reference for restoring and reconstructing surrounding vegetation in the Aksu River Basin.

参考文献

[1] 邓铭江, 周海鹰, 徐海量, 等. 塔里木河下游生态输水与生态调度研究[J]. 中国科学: 技术科学, 2016, 46(8):864-876.
[1] [ Deng Mingjiang, Zhou Haiying, Xu Hailiang, et al. Research on the ecological operation in the lower reaches of Tarim River based on water conveyance[J]. Scientia Sinica Techologica, 2016, 46(8):864-876. ]
[2] Richard M V, Sieber J, Archfield S A, et al. Relations among storage, yield and instream flow[J]. Water Resources Research, 2007, 43(5):909-918.
[3] Pang A, Sun T, Yang Z. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River estuary, China[J]. Journal of Hydrology, 2013, 482:129-138.
[4] 陈偲, 张代青, 于国荣, 等. 水库生态调度研究综述[J]. 中国人口·资源与环境, 2017, 27(11):99-102.
[4] [ Chen Si, Zhang Daiqing, Yu Guorong, et al. Review of research on ecological operation of reservoir[J]. China Population, Resources and Environment, 2017, 27(11):99-102. ]
[5] 邓铭江, 黄强, 畅建霞, 等. 大尺度生态调度研究与实践[J]. 水利学报, 2020, 51(7):757-773.
[5] [ Deng Mingjiang, Huang Qiang, Chang Jianxia, et al. Large-scale ecological operation research and practice[J]. Journal of Hydraulic Engineering, 2020, 51(7):757-773. ]
[6] 邓铭江, 黄强, 张岩, 等. 额尔齐斯河水库群多尺度耦合的生态调度研究[J]. 水利学报, 2017, 48(12):1387-1398.
[6] [ Deng Mingjiang, Huang Qiang, Zhang Yan, et al. Study on ecological scheduling of multi-scale coupling of reservoir group[J]. Journal of Hydraulic Engineering, 2017, 48(12):1387-1398. ]
[7] 王道席, 张婕, 杜得彦. 黑河生态水量调度实践[J]. 人民黄河, 2016, 38(10):96-99.
[7] [ Wang Daoxi, Zhang Jie, Du Deyan. Practice of ecology-oriented water dispatching in the Heihe River Basin[J]. Yellow River, 2016, 38(10):96-99. ]
[8] 邓铭江, 石泉. 内陆干旱区水资源管理调控模式[J]. 地球科学进展, 2014, 29(9):1046-1054.
[8] [ Deng Mingjiang, Shi Quan. Management and regulation pattern of water resource in inland arid regions[J]. Advances in Earth Science, 2014, 29(9):1046-1054. ]
[9] 付爱红, 陈亚宁, 李卫红. 塔里木河流域生态系统健康评价[J]. 生态学报, 2009, 29(5):2418-2426.
[9] [ Fu Aihong, Chen Yaning, Li Weihong. Assessment on ecosystem health in the Tarim River Basin[J]. Acta Ecologica Sinica, 2009, 29(5):2418-2426. ]
[10] 崔旺诚, 李卫红, 徐海量. 塔里木河下游输水与生态保育[J]. 干旱区地理, 2004, 27(2):172-178.
[10] [ Cui Wangcheng, Li Weihong, Xu Hailiang. Research on the response scope of natural vegetation in the lower reaches of Tarim River after water transport[J]. Arid Land Geography, 2004, 27(2):172-178. ]
[11] 孙天瑶, 李雪梅, 许民, 等. 2000—2018 年塔里木河流域植被覆盖时空格局[J]. 干旱区地理, 2020, 43(2):415-424.
[11] [ Sun Tianyao, Li Xuemei, Xu Min, et al. Spatial-temporal variations of vegetation coverage in the Tarim River Basin from 2000 to 2018[J]. Arid Land Geography, 2020, 43(2):415-424. ]
[12] 高庆, 艾里西尔·库尔班, 肖昊. 塔里木河下游区域植被时空变化[J]. 自然资源学报, 2019, 34(3):624-632.
[12] [ Gao Qing, Kuerban Ailixier, Xiao Hao. Spatiotemporal variation of vegetation in the lower reaches of Tarim River[J]. Journal of Natural Resources, 2019, 34(3):624-632. ]
[13] 刘迁迁, 古力米热·哈那提, 苏里坦, 等. 塔里木河下游河岸带地下水埋深对生态输水的响应过程[J]. 干旱区地理, 2017, 40(5):979-986.
[13] [ Liu Qianqian, Hanati Gulimire, Su Litan, et al. Response process of groundwater table to ecological water conveyance in the lower reaches of Tarim River riparian zone[J]. Arid Land Geography, 2017, 40(5):979-986. ]
[14] 李丽君, 张小清, 陈长清, 等. 近20 a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018, 41(2):238-247.
[14] [ Li Lijun, Zhang Xiaoqing, Chen Changqing, et al. Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years[J]. Arid Land Geography, 2018, 41(2):238-247. ]
[15] 韩路, 王海珍, 牛建龙, 等. 荒漠河岸林胡杨群落特征对地下水位梯度的响应[J]. 生态学报, 2017, 37(20):6836-6846.
[15] [ Han Lu, Wang Haizhen, Niu Jianlong, et al. Response of Populus euphratica communities in a desert riparian forest to the groundwater level gradient in the Tarim Basin[J]. Acta Ecologica Sinica, 2017, 37(20):6836-6846. ]
[16] 雍正, 赵成义, 施枫芝, 等. 近20年塔里木河干流区地下水埋深变化特征及其生态效应研究[J]. 水土保持学报, 2020, 34(3):182-189.
[16] [ Yong Zheng, Zhao Chengyi, Shi Fengzhi, et al. Variation characteristics of groundwater depth and its ecological effects in the main stream of the Tarim River in the past 20 years[J]. Journal of Soil and Water Conservation, 2020, 34(3):182-189. ]
[17] 王志成, 蒋军新, 方功焕, 等. 水资源约束下的阿克苏河流域适宜绿洲规模分析[J]. 冰川冻土, 2019, 41(4):986-992.
[17] [ Wang Zhicheng, Jiang Junxin, Fang Gonghuan, et al. Analysis on the suitable scale of the Aksu Oasis under the limit of water resources[J]. Journal of Glaciology and Geocryology, 2019, 41(4):986-992. ]
[18] 李虹彬, 刘亚婷, 王卫光, 等. 气候因素对阿克苏河径流变化影响的定量评估[J]. 灌溉排水学报, 2021, 40(1):115-122.
[18] [ Li Hongbin, Liu Yating, Wang Weiguang, et al. Assessing the impact of meteorological factors on streamflow in Aksu River[J]. Journal of Irrigation and Drainage, 2021, 40(1):115-122. ]
[19] 聂艳, 马泽玥, 周逍峰, 等. 阿克苏河流域土壤湿度反演与监测研究[J]. 生态学报, 2019, 39(14):5138-5148.
[19] [ Nie Yan, Ma Zeyue, Zhou Xiaofeng, et al. Soil moisture retrieval and monitoring in the Aksu River Basin[J]. Acta Ecologica Sinica, 2019, 39(14):5138-5148. ]
[20] 汪瑞. 阿克苏河灌区植被及湖泊生态需水量估算与特征分析研究[D]. 武汉: 华中师范大学, 2020.
[20] [ Wang Rui. Estimation and characteristic analysis of vegetation and lake ecological water demand in Aksu River irrigation district[D]. Wuhan: Central China Normal University, 2020. ]
[21] Sang X, Guo Q Z, Wu X X. Intensity and stationarity analysis of land use change based on CART algorithm[J]. Scientific Reports, 2019, 9(2):570-574.
[22] 刘兆彬. 基于CART决策树的高分遥感影像建筑物提取研究[D]. 武汉: 华中师范大学, 2018.
[22] [ Liu Zhaobin. High-resolution remote sensing image building extraction based on CART decision[D]. Wuhan: Central China Normal University, 2018. ]
[23] 刘欣. 利用CART算法从LandSat8卫星影像提取居民地的研究——以张掖、临泽地区为例[D]. 兰州: 兰州大学, 2015.
[23] [ Liu Xin. Using CART algorithm extract residential from LandSat 8 images: Zhangye, Linze case study[D]. Lanzhou: Lanzhou University, 2015. ]
[24] 陈敏建, 王浩, 王芳, 等. 内陆河干旱区生态需水分析[J]. 生态学报, 2004, 24(10):2136-2142.
[24] [ Chen Minjian, Wang Hao, Wang Fang, et al. Ecological water demand analysis in arid region[J]. Acta Ecologica Sinica, 2004, 24(10):2136-2142. ]
[25] 白元, 徐海量, 张青青, 等. 基于地下水恢复的塔里木河下游生态需水量估算[J]. 生态学报, 2015, 35(3):630-640.
[25] [ Bai Yuan, Xu Hailiang, Zhang Qingqing, et al. Evaluation on ecological water requirement in the lower reaches of Tarim River based on groundwater restoration[J]. Acta Ecologica Sinica, 2015, 35(3):630-640. ]
[26] 李磊, 陆林, 孙小龙, 等. 高铁沿线旅游流网络结构及其互动关系研究: 以合福高铁沿线地区为例[J]. 人文地理, 2020, 35(1):132-140.
[26] [ Li Lei, Lu Lin, Sun Xiaolong, et al. Study on the network structure and interactive relationship of tourism flow along high-speed railway: An example of Hefei-Fuzhou high-speed railway[J]. Human Geography, 2020, 35(1):132-140. ]
文章导航

/