收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2017, Vol. 40 ›› Issue (3): 622-632.

• 地球信息科学 • 上一篇    下一篇

一种基于TVDI模型的煤田温度异常区面积提取方法研究

朱小强1,2, 塔西甫拉提·特依拜1,2,3, 依力亚斯江·努尔麦麦提1,2, 张飞1,2,3, 戴岳1,2, 夏楠1,2, 张淑霞1,2   

  1. 1 新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046;
    2 新疆大学绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046;
    3 新疆智慧城市与环境建模普通高校重点实验室, 新疆 乌鲁木齐 830046
  • 收稿日期:2016-09-23 修回日期:2017-02-17 出版日期:2017-05-25
  • 通讯作者: 塔西甫拉提·特依拜(1958-),男,教授,博士生导师,主要从事资源环境遥感研究.Email:tash@xju.edu.cn
  • 作者简介:朱小强(1992-),男,硕士研究生,主要从事干旱区资源与环境遥感应用研究.Email:z_xiao_qiang@163.com
  • 基金资助:

    国家科技支撑计划项目资助(2014BAC15B01);国家自然科学基金项目(41561089);2016新疆研究生创新项目(XJGRI2016013)

A coalfield fire area extraction based on TVDI method

ZHU Xiao-qiang1,2, TIYIP Tashpolat1,2,3, Ilyas Nurmemet1,2, ZHANG Fei1,2,3, DAI Yue1,2, XIA Nan1,2, ZHANG Shu-xia1,2   

  1. 1 College of Resources and Environment Science, Xinjiang University, Urumqi 830046, Xinjiang, China;
    2 Key Laboratory of Oasis Ecology under Ministry of Education, Xinjiang University, Urumqi 830046, Xinjiang, China;
    3 General Institutes of Higher Learning Key Laboratory of Smart City and Environmental Modelling, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2016-09-23 Revised:2017-02-17 Online:2017-05-25

摘要: 选用Landsat 8 资料构建了地表温度(Ts)与归一化植被指数(NDVI)的Ts-NDVI特征空间,计算了温度植被干旱指数(TVDI)。利用MODIS温度产品数据和实地野外采样数据进行精度验证确定煤田火区TVDI阈值。通过对遥感影像的地表热异常信息进行定性与定量分析继而对煤田温度异常区边界信息进行挖掘。结果表明:(1)利用野外实测土壤相对含水量进行验证,反演值与实测值的相关系数R2=0.66,表明干旱指数的反演精度较高,相关性较好。(2)TVDI模型对温度呈现出较高的敏感性,二维散点图集中在1∶1 线上,对NDVI的敏感性较低,有利于识别温度异常区。(3)利用MVC最大合成法,建立TVDI-MVC作为精度验证数据,火区面积为5.03 km2,其中TVDI-SC提取火区精度最大为98.50%,TVDI-SW2提取火区精度最小为88.98%。可见煤田温度异常区范围较广,潜在的灾情恶化较严重。

关键词: Landsat 8, 温度植被干旱指数, 边界信息挖掘, 煤田火区

Abstract: It is universally acknowledged that coalfield fire has direct impacts on the efficient utilization of coal resources and economic development,so does the coalfield of east Junggar Basin in Xinjiang Uyghur Autonomous region. In this paper,Land surface temperature(Ts)and normalized difference vegetation index(NDVI) were obtained from Landsat-8 satellite data,and were used to create the feature space of Ts-NDVI,then a dryness index-Temperature Vegetation Dryness Index(TVDI)was calculated through the dry and wet line equation. The accuracy was verified and the reference upper boundary was determined by adopting MODIS LST product data. Through quantitative analysis of the information on surface heat anomalies using remotely sensed data,the dynamic variation rules and tendencies of sub coal fires were summarized. Because TVDI is much more sensitive to Ts than NDVI,extracting the coalfield fire boundary with TVDI method in the coalfield with fewer vegetation coverage is better. The results show as follows:(1)the correlation coefficient of the inversion value verified by using field measured soil moisture and measured value is R2=0.66,this demonstrates that the accuracy of TVDI is acceptable;( 2)TVDI presents a high sensitivity to temperature,while a lower sensitivity to NDVI,thus can be used to identify the fire area of high temperature;(3)the biggest area extracted by TVDI-MW method is 5.54 km2, and the longest boundary is up to the 93.7 km extracted by TVDI-SW2. TVDI method performs well in extracting the information in uncomplicated underlying surface,however,the coal dust could be deposited at the land surface and the root of vegetation around the mining area,which may result in a higher value of Ts and also disturb the accuracy of Ts. Therefore,there is a wide range of high-temperature coal fire area,and the potential deterioration may be more serious.

Key words: Landsat-8, Temperature Vegetation Dryness Index, boundary extraction, coalfield fire

中图分类号: 

  • TP79