| [1] |
欧廷海, 钱维宏. 东亚季风边缘带上的植被变化[J]. 地球物理学报, 2006, 49(3): 698-705.
|
|
[Ou Tinghai, Qian Weihong. Vegetation variations along the monsoon boundary zone in East Asia[J]. Chinese Journal of Geophysics, 2006, 49(3): 698-705. ]
doi: 10.1002/cjg2.v49.3
|
| [2] |
Zhang Y C, Piao S L, Sun Y, et al. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere[J]. Nature Climate Change, 2022, 12(6): 581-586.
doi: 10.1038/s41558-022-01374-w
|
| [3] |
刘立娜. 内蒙古及邻近地区表土花粉组合及其与植被和气候的定量关系[D]. 呼和浩特: 内蒙古大学, 2016.
|
|
[Liu Lina. The surface oil layers and their quantitative relationships with modern vegetation and climate in Inner Mongolia and surrounding areas[D]. Hohhot: Inner Mongolia University, 2016. ]
|
| [4] |
赵楠楠. 宁夏平原第四纪以来孢粉组合与古气候定量重建[D]. 北京: 中国地质科学院, 2020.
|
|
[Zhao Nannan. Palynological assemblages and quantitative reconstruction of paleoclimate in Ningxia Plain since Quaternary[D]. Beijing: Chinese Academy of Geological Sciences, 2020. ]
|
| [5] |
Cai M T, Ye P S, Yang X C, et al. Vegetation and climate change in the Hetao Basin (northern China) during the last interglacial-glacial cycle[J]. Journal of Asian Earth Sciences, 2019, 171: 1-8.
doi: 10.1016/j.jseaes.2018.11.024
|
| [6] |
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003, doi: 10.1029/2004pa001071.
|
| [7] |
杨劲松, 王永, 赵红梅. 晚更新世以来萨拉乌苏河流域主元素的地球化学特征及古环境意义[J]. 干旱区资源与环境, 2016, 30(11): 148-153.
|
|
[Yang Jinsong, Wang Yong, Zhao Hongmei. The geochemical characteristics and paleoenvironmental significance based on major elements of Salawusu River Valley since Late Pleistocene[J]. Journal of Arid Land Resources and Environment, 2016, 30(11): 148-153. ]
|
| [8] |
陈发虎, 范育新, Madsen D B, 等. 河套地区新生代湖泊演化与“吉兰泰-河套”古大湖形成机制的初步研究[J]. 第四纪研究, 2008(5): 866-873.
|
|
[Chen Fahu, Fan Yuxin, Madsen D B, et al. Preliminary study on the formation mechanism of the “Jilantai: Hetao”megalake and the lake evolutionary history in the Hetao region[J]. Quaternary Sciences, 2008(5): 866-873. ]
|
| [9] |
李建彪, 冉勇康, 郭文生. 呼包盆地第四纪地层与环境演化[J]. 第四纪研究, 2007, 27(4): 632-644.
|
|
[Li Jianbiao, Ran Yongkang, Guo Wensheng. Division of Quaternary beds and environment evolution in the Hubao Basin, China[J]. Quaternary Sciences, 2007, 27(4): 632-644. ]
|
| [10] |
中国科学院计算机网络信息中心. DEM数字高程数据[DB/OL]. [2024-05-12]. http://www.gscloud.cn/.
|
|
[Computer Network Information Center, Chinese Academy of Sciences. DEM digital elevation data[DB/OL]. [2024-05-12]. http://www.gscloud.cn/.]
|
| [11] |
吴利杰, 张翼龙, 石建省, 等. 河套盆地第四纪沉积古地理特征及演化[J]. 干旱区资源与环境, 2019, 33(8): 135-145.
|
|
[Wu Lijie, Zhang Yilong, Shi Jiansheng, et al. Quaternary sedimentary paleogeography characteristics and evolution of Hetao Basin[J]. Journal of Arid Land Resources and Environment, 2019, 33(8): 135-145. ]
|
| [12] |
Liu S W, Li X L, Zhang S R, et al. Fire history in arid and semi-arid regions of northwest China during the last glacial period inferred from a charcoal record in Hetao Basin[J]. PLoS One, 2025, 20(2): e0318816, doi: 10.1371/journal.pone.0318816.
|
| [13] |
Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive Gamma process[J]. Bayesian Analysis, 2011, 6: 457-474.
doi: 10.1214/ba/1339616472
|
| [14] |
Fægri K, Kaland P E, Krzywinski K. Textbook of pollen analysis 4th Edition[M]. Caldwell: The Blackburn Press, 2011.
|
| [15] |
唐领余, 毛礼米, 舒军武, 等. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016: 1-601.
|
|
[Tang Lingyu, Mao Limi, Shu Junwu, et al. Quaternary spore pollen atlas of China[M]. Beijing: Science Press, 2016: 1-601. ]
|
| [16] |
王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态[M]. 北京: 科学出版社, 1995: 1-461.
|
|
[Wang Fuxiong, Qian Nanfen, Zhang Yulong, et al. Pollen morphology of Chinese plants[M]. Beijing: Science Press, 1995: 1-461. ]
|
| [17] |
Cao X Y, Tian F, Herzschuh U, et al. Human activities have reduced plant diversity in eastern China over the last two millennia[J]. Global Change Biology, 2022, 28(16): 4962-4976.
doi: 10.1111/gcb.v28.16
|
| [18] |
Fick S E, Hijmans R J. WorldClim2: New 1 km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302-4315.
doi: 10.1002/joc.2017.37.issue-12
|
| [19] |
Cao X Y, Tian F, Telford R J, et al. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation[J]. Quaternary Science Reviews, 2017, 178: 37-53.
doi: 10.1016/j.quascirev.2017.10.030
|
| [20] |
Etten E V. Multivariate analysis of ecological data using CANOCO[J]. Austral Ecology, 2005, 30(4): 486-487.
doi: 10.1111/aec.2005.30.issue-4
|
| [21] |
Cao X Y, Herzschuh U, Telford R J, et al. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction[J]. Review of Palaeobotany and Palynology, 2014, 211: 87-96.
doi: 10.1016/j.revpalbo.2014.08.007
|
| [22] |
郑卓, 张潇, 满美玲, 等. 中国及邻区利用孢粉进行古气候定量重建的回顾与数据集成[J]. 第四纪研究, 2016, 36(3): 503-519.
|
|
[Zheng Zhuo, Zhang Xiao, Man Meiling, et al. Review and data integration of quantitative paleoclimate reconstruction using sporulation in China and neighboring regions[J]. Quaternary Sciences, 2016, 36(3): 503-519. ]
|
| [23] |
梁琛, 赵艳, 秦锋, 等. 孢粉-气候定量重建方法体系的建立及其应用—以青藏高原东部全新世温度重建为例[J]. 中国科学: 地球科学, 2020, 50(7): 977-994.
|
|
[Liang Chen, Zhao Yan, Qin Feng, et al. Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework[J]. Scientia Sinica (Terrae), 2020, 50(7): 977-994. ]
|
| [24] |
范保硕, 李月丛, 吕厚远, 等. 华北平原东北部小冰期干湿变化特征及其驱动机制[J]. 第四纪研究, 2022, 42(6): 1586-1600.
|
|
[Fan Baoshuo, Li Yuecong, Lü Houyuan, et al. Characteristics and driving mechanisms of dry-wet variation in the northeast area of North China Plain during the Little Ice Age[J]. Quaternary Sciences, 2022, 42(6): 1586-1600. ]
|
| [25] |
Da S, Zhang Z, Li Y, et al. Pollen-based quantitative paleoclimatic record spanning the Mid-Brunhes Event in the Nihewan Basin, north China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 612: 111-377.
|
| [26] |
吴思琪, 魏海芹, 陈春珠, 等. 中国季风边缘区表土孢粉分布特征及其影响因素[J]. 干旱区地理, 2024, 48(1): 53-62.
|
|
[Wu Siqi, Wei Haiqin, Chen Chunzhu, et al. Distribution characteristics and its influencing factors of surface soil pollen in the marginal monsoon region of China[J]. Arid Land Geography, 2024, 48(1): 53-62. ]
|
| [27] |
Telford R J, Birks H. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages[J]. Quaternary Science Reviews, 2011, 30(9-10): 1272-1278.
doi: 10.1016/j.quascirev.2011.03.002
|
| [28] |
韩岳婷, 李建勇, 刘剑波, 等. 准噶尔盆地西部花粉对植被的指示性研究[J]. 干旱区地理, 2023, 46(5): 773-781.
doi: 10.12118/j.issn.1000-6060.2022.437
|
|
[Han Yueting, Li Jianyong, Liu Jianbo, et al. Indicative study of pollen on vegetation in western Junger Basin[J]. Arid Land Geography, 2023, 46(5): 773-781. ]
doi: 10.12118/j.issn.1000-6060.2022.437
|
| [29] |
Sugita S. Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation[J]. Journal of Ecology, 1994, 82(4): 881-897.
doi: 10.2307/2261452
|
| [30] |
Zhu Y, Chen F H, Cheng B, et al. Pollen assemblage features of modern water samples from the Shiyang River drainage, arid region of China[J]. Acta Botanica Sinica, 2002, 44(3): 367-372.
|
| [31] |
Li X L, Wei M J, Zhang S R, et al. Surface pollen assemblages from different sedimentary environments in the Yinchuan Basin, north China, and their significance for stratigraphic pollen records[J]. Quaternary International, 2021, 583: 103-109.
doi: 10.1016/j.quaint.2021.02.015
|
| [32] |
吕厚远, 王淑云, 沈才明, 等. 青藏高原现代表土中冷杉和云杉花粉的空间分布[J]. 第四纪研究, 2004, 24(1): 39-49.
|
|
[Lü Houyuan, Wang Shuyun, Shen Caiming, et al. Spatial pattern of modern Abies and Picea pollen in the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2004, 24(1): 39-49. ]
|
| [33] |
陈立欣, 张芸, 孔昭宸. 新疆艾比湖小叶桦湿地空气花粉散布特征及其与气象因子的关系[J]. 中国科学: 地球科学, 2021, 51(11): 1935-1949.
|
|
[Chen Lixin, Zhang Yun, Kong Zhaochen. Airborne pollen patterns and their relationship with meteorological factors in the Betula microphylla-dominated wetland of Ebinur Lake, Xinjiang, China[J]. Scientia Sinica (Terrae), 2021, 51(11): 1935-1949. ]
|
| [34] |
Zhang S R, Xiao J L, Xu Q H. Regional precipitation variations during Heinrich events and Dansgaard-Oeschger cycles in the northern margin of the East Asian summer monsoon region[J]. Quaternary Science Reviews, 2022, 278: 107380, doi: 10.1016/j.quascirev.2022.107380.
|
| [35] |
North Greenland Ice Core Project NGRIP Members. High-resolution record of northern hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431: 147-151.
doi: 10.1038/nature02805
|
| [36] |
Svensson A, Andersen K K, Bigler M, et al. A 60000 year Greenland stratigraphic ice core chronology[J]. Climate of the Past, 2008, 4(1): 47-57.
doi: 10.5194/cp-4-47-2008
|
| [37] |
Wolff E W, Chappellaz J, Blunier T, et al. Millennial-scale variability during the last glacial: The ice core record[J]. Quaternary Science Reviews, 2010, 29(21-22): 2828-2838.
doi: 10.1016/j.quascirev.2009.10.013
|
| [38] |
Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429-436.
doi: 10.1038/20859
|
| [39] |
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Sciences Review, 1991, 10(4): 297-317.
doi: 10.1016/0277-3791(91)90033-Q
|
| [40] |
Bintanja R, van D W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature, 2005, 437(7055): 125-128.
doi: 10.1038/nature03975
|
| [41] |
Bard E. Climate shock: Abrupt changes over millennial time scales[J]. Physics Today, 2002, 55(12): 32-38.
|
| [42] |
Salgueiro E, Voelker A, Abreu L D, et al. Temperature and productivity changes off the western Iberian margin during the last 150 ky[J]. Quaternary Science Reviews, 2010, 29(5-6): 680-695.
doi: 10.1016/j.quascirev.2009.11.013
|
| [43] |
Tabish R, Masood S A, Stephan S, et al. Glacial to Holocene changes in sea surface temperature and seawater δ18O in the northern Indian Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 697-705.
doi: 10.1016/j.palaeo.2017.07.026
|