[1] |
Long D, Pan Y, Zhou J, et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models[J]. Remote Sensing of Environment, 2017, 192(4): 198-216.
doi: 10.1016/j.rse.2017.02.011
|
[2] |
Jia X X, Shao M A, Zhu Y J, et al. Soil moisture decline due to afforestation across the Loess Plateau, China[J]. Journal of Hydrology, 2017, 546: 113-122.
doi: 10.1016/j.jhydrol.2017.01.011
|
[3] |
Chen Z, Jiang W G, Wu J J, et al. Detection of the spatial patterns of water storage variation over China in recent 70 years[J]. Scientific Reports, 2017, 7: 6423, doi: 0.1038/s41598-017-06558-5.
pmid: 28743953
|
[4] |
Jia Y, Lei H M, Yang H B, et al. Terrestrial water storage change retrieved by GRACE and its implication in the Tibetan Plateau: Estimating areal precipitation in ungauged region[J]. Remote Sensing, 2020, 12(19): 3129, doi: 10.3390/rs12193129.
|
[5] |
李武东, 郭金运, 常晓涛, 等. 利用GRACE重力卫星反演2003—2013年新疆天山地区陆地水储量时空变化[J]. 武汉大学学报(信息科学版), 2017, 42(7): 1021-1026.
|
|
[Li Wudong, Guo Jinyun, Chang Xiaotao, et al. Terrestrial water storage changes in the Tianshan Mountains of Xinjiang measured by GRACE during 2003—2013[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1021-1026.]
|
[6] |
徐子君, 尹立河, 胡伏生, 等. 2002—2015年西北地区陆地水储量时空变化特征[J]. 中国水利水电科学研究院学报, 2018, 16(4): 314-320.
|
|
[Xu Zijun, Yi Lihe, Hu Fusheng, et al. Spatial and temporal variations of terrestrial water storage in northwest China during 2002—2015[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(4): 314-320.]
|
[7] |
Han Z M, Huang S Z, Huang Q, et al. Assessing GRACE-based terrestrial water storage anomalies dynamics at multi-timescales and their correlations with teleconnection factors in Yunnan Province, China[J]. Journal of Hydrology, 2019, 574(7): 836-850.
doi: 10.1016/j.jhydrol.2019.04.093
|
[8] |
Yang P, Xia J, Zhan C S, et al. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River Basin between 2002 and 2015[J]. Science of the Total Environment, 2017, 595(10): 218-228.
doi: 10.1016/j.scitotenv.2017.03.268
|
[9] |
Wei L Y, Jiang S H, Ren L L, et al. Spatiotemporal changes of terrestrial water storage and possible causes in the closed Qaidam Basin, China using GRACE and GRACE Follow-On data[J]. Journal of Hydrology, 2021, 598(7): 126274, doi: 10.1016/j.jhydrol.2021.126274.
|
[10] |
李晓英, 叶根苗, 蔡晨凯, 等. 基于GRACE和MODIS数据的长江流域陆地水储量变化分析及预测[J]. 长江科学院院报, 2018, 35(5): 130-135.
doi: 10.11988/ckyyb.20161195
|
|
[Li Xiaoying, Ye Genmiao, Cai Chenkai, et al. Analysis and prediction of the anomaly of terrestrail water storage in the Yantze River Basin based on MODIS and GRACE[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(5): 130-135.]
doi: 10.11988/ckyyb.20161195
|
[11] |
Meng F C, Su F G, Li Y, et al. Changes in terrestrial water storage during 2003—2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research-Atmospheres, 2019, 124(6): 2909-2931.
doi: 10.1029/2018JD029552
|
[12] |
Zhong Y L, Feng W, Humphrey V, et al. Human-induced and climate-driven contributions to water storage variations in the Haihe River Basin, China[J]. Remote Sensing, 2019, 11(24): 3050, doi: 10.3390/rs11243050.
|
[13] |
钟玉龙, 冯伟, 钟敏, 等. 中国区域基于降水重构陆地水储量变化数据集(2002—2019)[EB/OL]. [2022-04-18]. https://doi.org/10.11888/Hydro.tpdc.270990.
|
|
[Zhong Yulong, Feng Wei, Zhong Min, et al. Dataset of reconstructed terrestrial water storage in China based on precipitation (2002—2019)[EB/OL]. [2022-04-18]. https://doi.org/10.11888/Hydro.tpdc.270990.]
|
[14] |
Sun Z L, Zhu X F, Pan Y Z, et al. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China[J]. Science of the Total Environment, 2018, 634(9): 727-738.
doi: 10.1016/j.scitotenv.2018.03.292
|
[15] |
Yue S, Pilon P, Cavadias G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology, 2002, 259(1-4): 254-271.
doi: 10.1016/S0022-1694(01)00594-7
|
[16] |
Wang F, Wang Z M, Yang H B, et al. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain[J]. Journal of Hydrology, 2020, 585(3): 124849, doi: 10.1016/j.jhydrol.2020.124849.
|
[17] |
吕叶, 杨涵, 黄粤, 等. 咸海流域陆地水储量时空变化研究[J]. 干旱区地理, 2021, 44(4): 943-952.
|
|
[Lü Ye, Yang Han, Huang Yue, et al. Spatiotemporal variation of terrestrial water storage in Aral Sea Basin[J]. Arid Land Geography, 2021, 44(4): 943-952.]
|
[18] |
Zhang H, Zhang L L, Li J, et al. Monitoring the spatiotemporal terrestrial water storage changes in the Yarlung Zangbo River Basin by applying the P-LSA and EOF methods to GRACE data[J]. Science of the Total Environment, 2020, 713(4): 136274, doi: 10.1016/j.scitotenv.2019.136274.
|
[19] |
束秋妍, 潘云, 宫辉力, 等. 基于GRACE的华北平原地下水储量时空变化分析[J]. 国土资源遥感, 2018, 30(2): 132-137.
|
|
[Shu Qiuyan, Pan Yun, Gong Huili, et al. Spatiotemporal analysis of GRACE-based groundwater storage vairation in North China Plain[J]. Remote Sensing for Natural Resources, 2018, 30(2): 132-137.]
|
[20] |
Xie Z, Huete A, Cleverly J, et al. Multi-climate mode interactions drive hydrological and vegetation responses to hydroclimatic extremes in Australia[J]. Remote Sensing of Environment, 2019, 231(9): 111270, doi: 10.1016/j.rse.2019.111270.
|
[21] |
刘莹, 朱秀芳, 徐昆. 用于灌溉耕地制图的特征变量优选[J]. 农业工程学报, 2022, 38(3): 119-127.
|
|
[Liu Ying, Zhu Xiufang, Xu Kun. Optimizing the feature variables for irrigated farmland mapping[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 119-127.]
|
[22] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010
|
|
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010
|
[23] |
孙倩. 基于GRACE和GLDAS的新疆水资源时空变化研究[D]. 乌鲁木齐: 新疆大学, 2015.
|
|
[Sun Qian. GRACE and GLDAS data-based estimation of spatial variations in terrestrial water variations over Xinjiang[D]. Urumqi: Xinjiang University, 2015.]
|
[24] |
周志博, 刘杰, 杨超, 等. GRACE重力卫星探究我国华北地区陆地水储量变化[J]. 南水北调与水利科技(中英文), 2020, 18(5): 66-73.
|
|
[Zhou Zhibo, Liu Jie, Yang Chao, et al. The variation of terrestrial water storage in north China based on GRACE gravity satellite[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(5): 66-73.]
|
[25] |
吴奇凡. 黄土高原陆地水储量变化归因分析及区域尺度地下水补给[D]. 咸阳: 西北农林科技大学, 2019.
|
|
[Wu Qifan. Attribution analysis of terrestrial water storage and estimating groundwater recharge at regional scale on the Loess Plateau[D]. Xianyang: Northwest A & F University, 2019.]
|
[26] |
刘璐, 陈亚鹏, 李肖杨. 生态输水对孔雀河地下水埋深及植被的影响[J]. 干旱区研究, 2021, 38(4): 901-909.
|
|
[Liu Lu, Chen Yapeng, Li Xiaoyang. Effect of ecological water conveyance on groundwater depth and vegetation in the Kongque River[J]. Arid Zone Research, 2021, 38(4): 901-909.]
|
[27] |
李晓格, 张颖, 单永娟. 基于能值生态足迹模型的榆林市水资源可持续利用研究[J]. 干旱区研究, 2022, 39(4): 1066-1075.
|
|
[Li Xiaoge, Zhang Ying, Shan Yongjuan. Suatainable utilization of water resources in Yulin City based on an emergy ecological footprint model[J]. Arid Zone Research, 2022, 39(4): 1066-1075.]
|