干旱区地理 ›› 2023, Vol. 46 ›› Issue (4): 550-562.doi: 10.12118/j.issn.1000-6060.2022.306
徐宇杰1,2(),刘冰1(),孙爱军1,2,3,汪克奇1,2,李冬雪1,2,赵晖1
收稿日期:
2022-06-22
修回日期:
2022-07-19
出版日期:
2023-04-25
发布日期:
2023-04-28
通讯作者:
刘冰(1985-),男,博士,副研究员,主要从事干旱区环境演变与气候变化等方面的研究. E-mail: 作者简介:
徐宇杰(1996-),男,硕士研究生,主要从事干旱区环境演变等方面的研究. E-mail: 基金资助:
XU Yujie1,2(),LIU Bing1(),SUN Aijun1,2,3,WANG Keqi1,2,LI Dongxue1,2,ZHAO Hui1
Received:
2022-06-22
Revised:
2022-07-19
Online:
2023-04-25
Published:
2023-04-28
摘要:
古尔班通古特沙漠作为中国最大的固定、半固定沙漠,是中国境内受西风环流影响最为明显的沙漠之一,其全新世环境演变过程及其对全球气候变化的响应和反馈,对理解该区现代地表过程与未来环境演变趋势具有重要的科学意义。古尔班通古特沙漠及周边区域全新世环境演变研究的结果明显不同,存在中晚全新世和中全新世降水/湿度变化最优期的分歧,成因机制存在季风深入内陆和西风总体控制的争议。以目前区域已发表的多载体记录为基础,通过降维和集成分析重建了该区全新世气候/湿度变化背景,梳理区域风沙沉积地层年代学时空分布,集成了该区全新世风沙活动历史,进而探讨区域风沙活动与湿度变化的耦合关系。结果表明该区早中全新世(12~6 ka)气候干旱,风沙活动强烈;中晚全新世以来湿度逐渐增加、风沙活动逐渐减弱。通过区域及半球尺度的对比分析,发现该区环境演变过程主要受西风环流的控制。
徐宇杰, 刘冰, 孙爱军, 汪克奇, 李冬雪, 赵晖. 古尔班通古特沙漠及周边区域全新世环境演变研究进展[J]. 干旱区地理, 2023, 46(4): 550-562.
XU Yujie, LIU Bing, SUN Aijun, WANG Keqi, LI Dongxue, ZHAO Hui. Research progress of Holocene environmental evolution in the Gurbantunggut Desert and its surrounding areas[J]. Arid Land Geography, 2023, 46(4): 550-562.
表1
新疆北部记录全新世以来湿度演化的文献"
序号 | 类型 | 剖面名称 | 剖面位置 | 时间跨度/ka | 测年手段 | 年代数/个 | 参考文献 |
---|---|---|---|---|---|---|---|
A | 黄土-古土壤序列 | LJW剖面 | 43.975°N,85.336°E | 12.0~0.0 | OSL | 14 | Chen等[ |
B | 黄土-古土壤序列 | ZKT剖面 | 43.537°N,83.314°E | 12.0~0.5 | 14C | 5 | Chen等[ |
C | 黄土-古土壤序列 | TLD16剖面 | 43.335°N,83.018°E | 12.0~0.0 | OSL | 15 | Jia等[ |
D | 黄土-古土壤序列 | KS16剖面 | 43.432°N,83.943°E | 11.5~1.0 | OSL | 14 | Jia等[ |
E | 黄土-古土壤序列 | HC14剖面 | 44.600°N,87.563°E | 10.5~2.0 | 14C | 5 | Jia等[ |
F | 黄土-古土壤序列 | TLD剖面 | 43.401°N,83.037°E | 11.5~1.0 | OSL | 8 | Kang等[ |
G | 黄土-古土壤序列 | XEB剖面 | 43.422°N,82.933°E | 12.0~1.0 | OSL | 8 | Kang等[ |
H | 黄土-古土壤序列 | ZS剖面 | 42.934°N,80.956°E | 11.5~0.5 | OSL | 10 | Kang等[ |
I | 湖泊沉积 | 博斯腾湖钻孔 | 41.978°N,87.244°E | 8.5~0.0 | OSL、14C | 12 | Huang等[ |
J | 湖泊沉积 | 乌伦古湖钻孔 | 47.273°N,87.137°E | 9.5~0.0 | 14C | 6 | 蒋庆丰等[ |
K | 湖泊沉积 | 赛里木湖钻孔 | 44.609°N,81.117°E | 12.0~0.0 | 14C | 12 | Jiang等[ |
L | 湖泊沉积 | 喀纳斯湖钻孔 | 48.730°N,87.020°E | 12.0~0.0 | 14C | 9 | Huang等[ |
M | 湖泊沉积 | 巴里坤湖钻孔 | 43.629°N,92.808°E | 11.0~0.0 | 14C | 12 | An等[ |
N | 湖泊沉积 | 艾比湖钻孔 | 44.906°N,82.904°E | 12.0~0.0 | 14C | 8 | Wang等[ |
O | 泥炭沉积 | 铁力沙汗泥炭 | 48.809°N,86.920°E | 9.0~0.0 | 14C | 5 | Zhang等[ |
P | 泥炭沉积 | 柴窝堡泥炭 | 43.496°N,87.910°E | 8.5~0.0 | 14C | 19 | Hong等[ |
Q | 泥炭沉积 | 克拉沙子泥炭 | 48.117°N,88.370°E | 11.5~3.5 | 14C | 14 | Wang等[ |
R | 泥炭沉积 | 那仁夏泥炭 | 48.800°N,86.900°E | 11.5~0.0 | 14C | 9 | Feng等[ |
S | 泥炭沉积 | 温泉-1泥炭 | 44.972°N,81.030°E | 10.0~0.0 | 14C | 8 | Li等[ |
T | 石笋沉积 | 布鲁克石笋 | 42.433°N,88.733°E | 9.0~0.5 | ICP-MS | 19 | Liu等[ |
表2
古尔班通古特沙漠及其周边记录全新世以来风沙活动的文献"
序号 | 类型 | 剖面名称 | 剖面位置 | 时间跨度/ka | 测年手段 | 年代数/个 | 代用指标 | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | 风成沙序列 | 梧桐沟钻孔 | 44.467°N,87.864°E | 12.0~0.0 | OSL | 10 | 粒度、磁化率等 | Li等[ |
2 | 风成沙-河湖相序列 | 沙漠钻孔 | 44.497°N,88.183°E | 8.0~5.0 | TL | 5 | 粒度、孢粉等 | 黄强等[ |
3 | 风成沙-古土壤序列 | 莫索湾剖面 | 44.667°N,86.333°E | 11.0~0.5 | 14C、TL | 9 | 粒度、CaCO3等 | 陈惠中等[ |
4 | 风成沙-河湖相序列 | MGDD | 44.325°N,86.238°E | 4.5~4.0 | 14C | 2 | 粒度、有机质等 | 马妮娜[ |
5 | 风成沙-河湖相序列 | 4C2L | 44.619°N,86.624°E | 5.5~5.0 | 14C | 2 | 粒度、有机质等 | 马妮娜[ |
6 | 风成沙-河湖相序列 | 23SGZ | 45.143°N,85.958°E | 1.0~0.0 | 14C | 1 | 粒度、有机质等 | 马妮娜[ |
7 | 风成沙-河湖相序列 | TDG-A | 44.696°N,86.766°E | 6.0~5.0 | 14C | 1 | 粒度、有机质等 | 马妮娜[ |
8 | 湖泊沉积 | 东道海子B剖面 | 44.666°N,87.570°E | 5.0~0.0 | 14C | 8 | 粒度、孢粉等 | 马妮娜等[ |
9 | 湖泊沉积 | 东道海子剖面DDH | 44.604°N,87.590°E | 6.5~0.0 | OSL | 5 | 粒度、磁化率等 | 何冬[ |
10 | 湖泊沉积 | 东道海子钻孔 | 44.643°N,87.575°E | 12.0~0.0 | 14C | 5 | 粒度、孢粉等 | 李志忠等[ |
11 | 湖泊沉积 | BLK-1 | 43.700°N,92.833°E | 9.4~0.0 | 14C | 7 | 粒度 | 薛积彬等[ |
12 | 风成沙-土壤序列 | THE-1~THE-8 | 42°420′~43°120′N,83°150′~84°450′E | 12.0~0.0 | OSL | 79 | 粒度、磁化率等 | Long等[ |
[1] | 陈发虎, 黄小忠, 杨美临, 等. 亚洲中部干旱区全新世气候变化的西风模式——以新疆博斯腾湖记录为例[J]. 第四纪研究, 2006, 26(6): 881-887. |
[Chen Fahu, Huang Xiaozhong, Yang Meilin, et al. Westerly dominated Holocene climate model in arid Central Asia: Case study on Bosten Lake, Xinjiang, China[J]. Quaternary Sciences, 2006, 26(6): 881-887.] | |
[2] |
Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
doi: 10.1016/j.earscirev.2019.03.005 |
[3] |
Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364.
doi: 10.1016/j.quascirev.2007.10.017 |
[4] |
Chen J, Huang W, Jin L Y, et al. A climatological northern boundary index for the East Asian summer monsoon and its interannual variability[J]. Science China Earth Sciences, 2018, 61(1): 13-22.
doi: 10.1007/s11430-017-9122-x |
[5] |
Feng S, Hu Q, Huang W, et al. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations[J]. Global and Planetary Change, 2014, 112: 41-52.
doi: 10.1016/j.gloplacha.2013.11.002 |
[6] | 陈惠中, 金炯, 董光荣. 全新世古尔班通古特沙漠演化和气候变化[J]. 中国沙漠, 2001, 21(4): 333-339. |
[Chen Huizhong, Jin Jiong, Dong Guangrong. Holocene evolution processes of Gurbantunggut Desert and climatic changes[J]. Journal of Desert Research, 2001, 21(4): 333-339.] | |
[7] |
Li S H, Fan A C. OSL chronology of sand deposits and climate change of last 18 ka in Gurbantunggut Desert, northwest China[J]. Journal of Quaternary Science, 2011, 26(8): 813-818.
doi: 10.1002/jqs.v26.8 |
[8] |
Long H, Shen J, Chen J H, et al. Holocene moisture variations over the arid Central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China[J]. Quaternary Science Reviews, 2017, 174: 13-32.
doi: 10.1016/j.quascirev.2017.08.024 |
[9] | 钟德才. 中国沙海动态演化[M]. 兰州: 甘肃文化出版社, 1998: 181-187. |
[Zhong Decai. Dynamic evolution of sand desert in China[M]. Lanzhou: Gansu Culture Publishing House, 1998: 181-187.] | |
[10] | 钱亦兵, 吴兆宁. 古尔班通古特沙漠环境研究[M]. 北京: 科学出版社, 2010: 2-28. |
[Qian Yibing, Wu Zhaoning. Environmental study of the Gurbantunggut Desert[M]. Beijing: Science Press, 2010: 2-28.] | |
[11] | 季方, 叶玮, 魏文寿. 古尔班通古特沙漠固定与半固定沙丘成因初探[J]. 干旱区地理, 2000, 23(1): 32-36. |
[Ji Fang, Ye Wei, Wei Wenshou. Preliminary study on the formation causes of the fixed and semi-fixed dunes in Gurbantonggut Desert[J]. Arid Land Geography, 2000, 23(1): 32-36.] | |
[12] | 刘瑞, 李志忠, 靳建辉, 等. 古尔班通古特沙漠西南缘新月形沙丘内部沉积构造特征研究[J]. 干旱区地理, 2022, 45(3): 802-813. |
[Liu Rui, Li Zhizhong, Jin Jianhui, et al. Internal sedimentary structure of barchan dune in the southwest of Gurbantunggut Desert[J]. Arid Land Geography, 2022, 45(3): 802-813.] | |
[13] |
Qian Y B, Wu Z N, Zhao R F, et al. Vegetation patterns and species-environment relationships in the Gurbantunggut Desert of China[J]. Journal of Geographical Sciences, 2008, 18(4): 400-414.
doi: 10.1007/s11442-008-0400-2 |
[14] | 刘铮瑶. 古尔班通古特沙漠沙丘地貌及其发育环境[D]. 西安: 陕西师范大学, 2020. |
[Liu Zhengyao. Dune landform and its development environment in Gurbantunggut Desert[D]. Xi’an: Shaanxi Normal University, 2020.] | |
[15] | 温仰磊, 王友郡, 柳加波, 等. 准噶尔盆地南缘黄土磁化率变化规律及影响因素[J]. 地球环境学报, 2014, 5(2): 85-92. |
[Wen Yanglei, Wang Youjun, Liu Jiabo, et al. Variation and influencing factors of loess susceptibility in the southern margin of Junggar Basin[J]. Journal of Earth Environment, 2014, 5(2): 85-92.] | |
[16] |
Chen F H, Jia J, Chen J H, et al. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146.
doi: 10.1016/j.quascirev.2016.06.002 |
[17] |
Jia J, Chen J H, Wang Z Y, et al. No evidence for an anti-phased Holocene moisture regime in mountains and basins in Central Asian: Records from Ili loess, Xinjiang[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572: 110407, doi: 10.1016/j.palaeo.2021.110407.
doi: 10.1016/j.palaeo.2021.110407 |
[18] |
Kang S G, Wang X L, Roberts H M, et al. Increasing effective moisture during the Holocene in the semiarid regions of the Yili Basin, Central Asia: Evidence from loess sections[J]. Quaternary Science Reviews, 2020, 246: 106553, doi: 10.1016/j.quascirev.2020.106553.
doi: 10.1016/j.quascirev.2020.106553 |
[19] |
Jiang Q F, Ji J F, Shen J, et al. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China[J]. Science China Earth Sciences, 2013, 56(3): 339-353.
doi: 10.1007/s11430-012-4550-9 |
[20] | 孙湘君, 杜乃秋, 翁成郁, 等. 新疆玛纳斯湖盆周围近14000年以来的古植被古环境[J]. 第四纪研究, 1994, 14(3): 239-248. |
[Sun Xiangjun, Du Naiqiu, Weng Chengyu, et al. Paleovegetation and paleoenvironment of Manasi Lake, Xinjiang, NW China during the last 14000 years[J]. Quaternary Sciences, 1994, 14(3): 239-248.] | |
[21] |
Herzschuh U, Tarasov P, Wünnemann B, et al. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211(1-2): 1-17.
doi: 10.1016/j.palaeo.2004.04.001 |
[22] |
Zhang D L, Feng Z D. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records[J]. Earth-Science Reviews, 2018, 185: 847-869.
doi: 10.1016/j.earscirev.2018.08.007 |
[23] |
Huang X Z, Peng W, Rudaya N, et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13): 6628-6636.
doi: 10.1029/2018GL078028 |
[24] |
Wang W, Zhang D L. Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China[J]. Global and Planetary Change, 2019, 179: 10-22.
doi: 10.1016/j.gloplacha.2019.05.003 |
[25] | 蒋庆丰, 沈吉, 刘兴起, 等. 西风区全新世以来湖泊沉积记录的高分辨率古气候演化[J]. 科学通报, 2007, 52(9): 1042-1049. |
[Jiang Qingfeng, Shen Ji, Liu Xingqi, et al. A high resolution climatic change since Holocene inferred from multi proxy of lake sediment in westerly area of China[J]. Chinese Science Bulletin, 2007, 52(9): 1042-1049.] | |
[26] |
Feng Z D, Sun A Z, Abdusalih N, et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene[J]. The Holocene, 2016, 27(5): 683-693.
doi: 10.1177/0959683616670469 |
[27] |
Li J Y, Wang N L, Dodson J, et al. Holocene negative coupling of summer temperature and moisture availability over southeastern arid Central Asia[J]. Climate Dynamics, 2020, 55(5): 1187-1208.
doi: 10.1007/s00382-020-05319-x |
[28] |
Zhang Y, Meyers P A, Liu X T, et al. Holocene climate changes in the Central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China[J]. Quaternary Science Reviews, 2016, 152: 19-30.
doi: 10.1016/j.quascirev.2016.09.016 |
[29] | Hong B, Gasse F, Uchida M, et al. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years[J]. Scientific Reports, 2014, 4(1): 1-10. |
[30] |
Liu X K, Liu J B, Shen C C, et al. Inconsistency between records of δ18O and trace element ratios from stalagmites: Evidence for increasing mid-late Holocene moisture in arid Central Asia[J]. The Holocene, 2019, 30(3): 369-379.
doi: 10.1177/0959683619887431 |
[31] |
Huang X Z, Chen F H, Fan Y X, et al. Dry late-glacial and early Holocene climate in arid Central Asia indicated by lithological and palynological evidence from Bosten Lake, China[J]. Quaternary International, 2009, 194(1-2): 19-27.
doi: 10.1016/j.quaint.2007.10.002 |
[32] |
An C B, Lu Y B, Zhao J J, et al. A high-resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): Implications for Central Asia[J]. The Holocene, 2012, 22(1): 43-52.
doi: 10.1177/0959683611405244 |
[33] |
Wang W, Feng Z D, Ran M, et al. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-Central Asia[J]. Quaternary International, 2013, 311: 54-62.
doi: 10.1016/j.quaint.2013.07.034 |
[34] | 黄强, 周兴佳. 晚更新世晚期以来古尔班通古特沙漠南部的气候环境演化[J]. 干旱区地理, 2000, 23(1): 55-60. |
[Huang Qiang, Zhou Xingjia. The climate-environment changes in the south of Gurbantunggut Desert since 80 ka BP[J]. Arid Land Geography, 2000, 23(1): 55-60.] | |
[35] | 马妮娜. 全新世以来古尔班通古特沙漠南缘风沙活动研究[D]. 北京: 中国科学院大学, 2005. |
[Ma Ni’na. Study of aeolian activity in the southern margin of Gurbantunggut Desert since Holocene[D]. Beijing: University of Chinese Academy of Sciences, 2005.] | |
[36] | 马妮娜, 穆桂金, 阎顺. 中全新世以来乌鲁木齐东道海子B剖面沉积物源探讨与分析[J]. 干旱区地理, 2005, 28(2): 188-193. |
[Ma Ni’na, Mu Guijin, Yan Shun. Grain-size analyses and detrital sediment discuss of the B profile of Dongdaohaizi in Urumqi since the middle Holocene[J]. Arid Land Geography, 2005, 28(2): 188-193.] | |
[37] | 何冬. 乌鲁木齐东道海子沉积记录的中全新世以来气候变化研究[D]. 西安: 陕西师范大学, 2016. |
[He Dong. Study of climate change from sediments recorded of Dongdaohaizi in Urumqi since the middle Holocene[D]. Xi’an: Shaanxi Normal University, 2016.] | |
[38] | 李志忠, 海鹰, 罗若愚, 等. 乌鲁木齐河下游地区湖泊沉积物的粒度特征与沉积环境[J]. 干旱区研究, 2000, 17(3): 1-5. |
[Li Zhizhong, Hai Ying, Luo Ruoyu, et al. Grain-size characteristics and sedimentary environment in the lacustrain deposit of downstream area in Wulumuqi River since 30 ka BP[J]. Arid Zone Research, 2000, 17(3): 1-5.] | |
[39] | 李志忠, 海鹰, 周勇, 等. 乌鲁木齐河下游地区30 ka BP以来湖泊沉积的孢粉组合与古植被古气候[J]. 干旱区地理, 2001, 24(3): 201-205. |
[Li Zhizhong, Hai Ying, Zhou Yong, et al. Pollen component of lacustrain deposit and its palaeo-environment significance in the downstream region of Urumqi River since 30 ka BP[J]. Arid Land Geography, 2001, 24(3): 201-205.] | |
[40] | 薛积彬, 钟巍. 干旱区湖泊沉积物粒度组分记录的区域沙尘活动历史: 以新疆巴里坤湖为例[J]. 沉积学报, 2008, 26(4): 647-654. |
[Xue Jibin, Zhong Wei. Variations in dust event reflected by grain-size component of lacustrine records in droughty area: A case study on Barkol Lake, Xinjiang, China[J]. Acta Sedimentologica Sinica, 2008, 26(4): 647-654.] | |
[41] |
Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2017, 70(3): 412-425.
doi: 10.1016/j.yqres.2008.06.005 |
[42] | Dyke A S. An outline of north American deglaciation with emphasis on central and northern Canada[J]. Developments in Quaternary Sciences, 2004, 2: 373-424. |
[43] |
Praetorius S K, McManus J F, Oppo D W, et al. Episodic reductions in bottom-water currents since the last ice age[J]. Nature Geoscience, 2008, 1(7): 449-452.
doi: 10.1038/ngeo227 |
[44] |
Jin L Y, Chen F H, Morrill C, et al. Causes of early Holocene desertification in arid Central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591.
doi: 10.1007/s00382-011-1086-1 |
[45] | Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[46] |
Zhao J J, An C B, Huang Y S, et al. Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia[J]. Quaternary Science Reviews, 2017, 178: 14-23.
doi: 10.1016/j.quascirev.2017.10.036 |
[1] | 杨锐, 李建勇, 王宁练, 陈小俊, 杜建峰, 刘剑波, 韩岳婷. 西天山温泉地区全新世沉积物元素地球化学记录及其古环境意义[J]. 干旱区地理, 2023, 46(6): 900-910. |
[2] | 马运强, 刘瑞, 李志忠, 靳建辉, 邹晓君, 谭典佳, 陶通炼. 古尔班通古特沙漠南缘沉积记录的全新世环境演变[J]. 干旱区地理, 2023, 46(10): 1663-1679. |
[3] | 刘瑞,李志忠,靳建辉,解锡豪,邹晓君,马运强. 古尔班通古特沙漠西南缘新月形沙丘内部沉积构造特征研究[J]. 干旱区地理, 2022, 45(3): 802-813. |
[4] | 张峰,夏倩倩,迪丽拜尔·吐尔孙,刘建宗. 克里雅河尾闾圆沙三角洲古河道剖面所记录全新世古绿洲环境变化[J]. 干旱区地理, 2021, 44(1): 178-187. |
[5] | 李晓刚, 黄春长, 庞奖励. 无定河下游全新世古洪水研究 [J]. 干旱区地理, 2020, 43(2): 380-387. |
[6] | 王泽锋, 胡顺军, 李浩. 古尔班通古特沙漠南缘丘间地梭梭群落蒸散特征[J]. 干旱区地理, 2018, 41(6): 1303-1309. |
[7] | 段炎武, 孙青, 谢曼曼, 侯居峙, 梁洁, 李国强, 陈发虎. 新疆天山黄土GDGTs重建的全新世温度逐步升高及其可能意义[J]. 干旱区地理, 2018, 41(3): 528-535. |
[8] | 吕志强, 鲁瑞洁, 刘小槺, 杜婧, 陈璐, 李腾飞. 青海湖湖东沙地沉积记录的全新世以来风沙活动变化[J]. 干旱区地理, 2018, 41(3): 536-544. |
[9] | 王兆夺, 黄春长, 查小春, 庞奖励, 周亚利, 李晓刚. 淮河上游卢庄段全新世古洪水水文恢复研究[J]. 干旱区地理, 2018, 41(2): 325-333. |
[10] | 唐进年, 丁峰, 张进虎, 苏志珠, 孙涛. 库姆塔格沙漠东南缘BL剖面粒度记录的全新世快速气候事件[J]. 干旱区地理, 2017, 40(6): 1171-1178. |
[11] | 胡迎, 黄春长, 周亚利, 庞奖励, 查小春, 郭永强, 石彬楠. 黄河上游洮河流域全新世古洪水水文学研究[J]. 干旱区地理, 2017, 40(5): 1029-1037. |
[12] | 李浩, 胡顺军, 王泽峰. 古尔班通古特沙漠南缘梭梭茎干液流变化及其对环境因子的响应[J]. 干旱区地理, 2017, 40(4): 795-804. |
[13] | 董义阳, 胡顺军, 赵成义, 朱海, 王丹丹, 丁之勇. 采用一维水平入渗试验测定古尔班通古特沙漠南缘丘间地风沙土渗透系数[J]. 干旱区地理, 2017, 40(4): 729-736. |
[14] | 谢海超, 魏海涛, 王强, 黄小忠, 彭卫, 陈发虎. 新疆博斯腾湖全新世沉积磁性矿物组成与沉积环境探讨[J]. 干旱区地理, 2017, 40(3): 512-522. |
[15] | 刘雯瑾, 黄春长, 庞奖励, 查小春, 周亚利, 石彬楠. 黄河马头关段全新世古洪水水文恢复及气候背景研究[J]. 干旱区地理, 2017, 40(1): 85-93. |
|